递归神经网络(RNN),是两种人工神经网络的总称,一种是时间递归神经网络(recurrent neural network),另一种是结构递归神经网络(recursive neural network)。

min-char-rnn.py gist:112 lines of Python

简介:

人工神经网络的发展历史己有60多年,是采用物理可实现的系统模仿人脑神经细胞的结构和功能,是在神经生理学和神经解剖学的基础上,利用电子技术、光学技术等模拟生物神经网络的结构和功能原理而发展起来的一门新兴的边缘交叉学科,(下面简称为神经网络,NeuralNetwork)。这些学科相互结合,相互渗透和相互推动。神经网络是当前科学理论研究的主要“热点”之一,它的发展对目前和未来的科学技术的发展将有重要的影响。神经网络的主要特征是:大规模的并行处理、分布式的信息存储、良好的自适应性、自组织性、以及很强的学习能力、联想能力和容错能力。神经网络在处理自然语言理解、图像识别、智能机器人控制等方面具有独到的优势。与冯·诺依曼计算机相比,神经网络更加接近人脑的信息处理模式。
自从20世纪80年代,Hopfield首次提出了利用能量函数的概念来研究一类具有固定权值的神经网络的稳定性并付诸电路实现以来,关于这类具有固定权值神经网络稳定性的定性研究得到大量的关注。由于神经网络的各种应用取决于神经网络的稳定特性,所以,关于神经网络的各种稳定性的定性研究就具有重要的理论和实际意义。递归神经网络具有较强的优化计算能力,是目前神经计算应用最为广泛的一类神经网络模型。
根据不同的划分标准,神经网络可划分成不同的种类。按连接方式来分主要有两种:前向神经网络和反馈(递归)神经网络。前向网络主要是函数映射,可用于模式识别和函数逼近。递归神经网络因为有反馈的存在,所以它是一个非线性动力系统,可用来实现联想记忆和求解优化等问题。由于神经网络的记亿信息都存储在连接权上,根据连接权的获取方式来划分,一般可分为有监督神经网络、无监督神经网络和固定权值神经网络。有监督学习是在网络训练往往要基于一定数量的训练样木。在学习和训练过程中,网络根据实际输出与期望输出的比较,进行连接权值和阂值的调节。通常称期望输出为教师信号,是评价学习的标准。最典型的有监督学习算法是BP(BackProPagation)算法。对于无监督学习,无教师信号提供给网络,网络能根据其特有的结构和学习规则,进行连接权值和阀值的调整,以表示外部输入的某种固有特征。
与有监督和无监督神经网络相比,固定权值神经网络不需要进行学习,权值是根据要解决的问题事先确定的。具有反馈的固定权值递归神经网络,如目前受到广泛研究的Hopfield网络、细胞神经网络、双向联想记忆网络和Cohen-Grossberg网络等,主要用在优化计算、联想记忆和模式识别等方面。
 

Recurrent Neural Network(递归神经网络)的更多相关文章

  1. Recurrent Neural Network(循环神经网络)

    Reference:   Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...

  2. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  3. 循环神经网络(Recurrent Neural Network,RNN)

    为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...

  4. 4.5 RNN循环神经网络(recurrent neural network)

     自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1  RNN循环神经网络 ...

  5. 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement

    论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...

  6. Recurrent Neural Network系列2--利用Python,Theano实现RNN

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  7. Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...

  8. Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM

    yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...

  9. Recurrent Neural Network[survey]

    0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...

随机推荐

  1. Delphi使用Indy、ICS组件读取网页

    使用Indy 10中TIdHTTP的例子: 代码 uses IdHttp; . . . function HttpGet(const Url: string; var Html: string): B ...

  2. firstModel权限问题

    laravel根目录下没有 .env , 执行 cp .env.example .envstorage和bootstrap/cache 没有给写入权限, 执行 chmod -R 777 storage ...

  3. fuser

    fuser 命令,查看正在被占用的文件:

  4. 深入浅出MFC学习笔记 消息

    本章将会对MFC的消息映射和 命令传递机制做深入探讨. MFC规定了消息传递的路线,消息会按照这个路线传递下去,找不到归宿的话就交给DefWindowProc. 在产生窗口之前,如果我们在创建窗口时指 ...

  5. NSString 转换

    NSString *tempA = @"123"; NSString *tempB = @"456"; 1,字符串拼接 NSString *newString ...

  6. Eclipse maven工程生命周期clean、compile、test、package

    1.清理. 编译 工程右键->Run As->Maven build... 清理.编译操作控制台信息输出: 2.测试  同清理.编译,goals改成test 3.打包  同清理.编译,go ...

  7. JAVA中跨平台分隔符

    在Windows下的路径分隔符和Linux下的路径分隔符是不一样的,当直接使用绝对路径时,跨平台会暴出“No such file or diretory”的异常. 比如说要在temp目录下建立一个te ...

  8. Android 截屏检测

    最近项目中新接到一个需求,对手机截屏进行检测并进行后续操作,类似于Snapchat,iOS具有先天优势,因iOS系统提供了相关API!Google无果之后原作者决定再次造轮子,为了持续表达对Rx的敬意 ...

  9. c作图-正弦函数图像

    #include<graphics.h>#include<math.h>int main(){    int gmode,gdriver=DETECT; double x1,y ...

  10. collections、time和datetime模块

    主要内容: 一.collections模块 二.time模块 三.datetime模块 1️⃣  collection模块 1.什么是collections模块.干什么用? collections模块 ...