递归神经网络(RNN),是两种人工神经网络的总称,一种是时间递归神经网络(recurrent neural network),另一种是结构递归神经网络(recursive neural network)。

min-char-rnn.py gist:112 lines of Python

简介:

人工神经网络的发展历史己有60多年,是采用物理可实现的系统模仿人脑神经细胞的结构和功能,是在神经生理学和神经解剖学的基础上,利用电子技术、光学技术等模拟生物神经网络的结构和功能原理而发展起来的一门新兴的边缘交叉学科,(下面简称为神经网络,NeuralNetwork)。这些学科相互结合,相互渗透和相互推动。神经网络是当前科学理论研究的主要“热点”之一,它的发展对目前和未来的科学技术的发展将有重要的影响。神经网络的主要特征是:大规模的并行处理、分布式的信息存储、良好的自适应性、自组织性、以及很强的学习能力、联想能力和容错能力。神经网络在处理自然语言理解、图像识别、智能机器人控制等方面具有独到的优势。与冯·诺依曼计算机相比,神经网络更加接近人脑的信息处理模式。
自从20世纪80年代,Hopfield首次提出了利用能量函数的概念来研究一类具有固定权值的神经网络的稳定性并付诸电路实现以来,关于这类具有固定权值神经网络稳定性的定性研究得到大量的关注。由于神经网络的各种应用取决于神经网络的稳定特性,所以,关于神经网络的各种稳定性的定性研究就具有重要的理论和实际意义。递归神经网络具有较强的优化计算能力,是目前神经计算应用最为广泛的一类神经网络模型。
根据不同的划分标准,神经网络可划分成不同的种类。按连接方式来分主要有两种:前向神经网络和反馈(递归)神经网络。前向网络主要是函数映射,可用于模式识别和函数逼近。递归神经网络因为有反馈的存在,所以它是一个非线性动力系统,可用来实现联想记忆和求解优化等问题。由于神经网络的记亿信息都存储在连接权上,根据连接权的获取方式来划分,一般可分为有监督神经网络、无监督神经网络和固定权值神经网络。有监督学习是在网络训练往往要基于一定数量的训练样木。在学习和训练过程中,网络根据实际输出与期望输出的比较,进行连接权值和阂值的调节。通常称期望输出为教师信号,是评价学习的标准。最典型的有监督学习算法是BP(BackProPagation)算法。对于无监督学习,无教师信号提供给网络,网络能根据其特有的结构和学习规则,进行连接权值和阀值的调整,以表示外部输入的某种固有特征。
与有监督和无监督神经网络相比,固定权值神经网络不需要进行学习,权值是根据要解决的问题事先确定的。具有反馈的固定权值递归神经网络,如目前受到广泛研究的Hopfield网络、细胞神经网络、双向联想记忆网络和Cohen-Grossberg网络等,主要用在优化计算、联想记忆和模式识别等方面。
 

Recurrent Neural Network(递归神经网络)的更多相关文章

  1. Recurrent Neural Network(循环神经网络)

    Reference:   Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种 ...

  2. Recurrent Neural Network系列1--RNN(循环神经网络)概述

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  3. 循环神经网络(Recurrent Neural Network,RNN)

    为什么使用序列模型(sequence model)?标准的全连接神经网络(fully connected neural network)处理序列会有两个问题:1)全连接神经网络输入层和输出层长度固定, ...

  4. 4.5 RNN循环神经网络(recurrent neural network)

     自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1  RNN循环神经网络 ...

  5. 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement

    论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...

  6. Recurrent Neural Network系列2--利用Python,Theano实现RNN

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS T ...

  7. Recurrent Neural Network系列3--理解RNN的BPTT算法和梯度消失

    作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 这是RNN教程的第三部分. 在前面的教程中,我们从头实现了一个循环 ...

  8. Recurrent Neural Network系列4--利用Python,Theano实现GRU或LSTM

    yi作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORK ...

  9. Recurrent Neural Network[survey]

    0.引言 我们发现传统的(如前向网络等)非循环的NN都是假设样本之间无依赖关系(至少时间和顺序上是无依赖关系),而许多学习任务却都涉及到处理序列数据,如image captioning,speech ...

随机推荐

  1. svn服务器端回退版本 (转)

    由于误操作,不小心将错误的代码提交到了svn上,于是想在服务器上撤销本次提交,经过尝试,发现进行以下步骤的操作即可彻底删除本次提交: 1.首先找到本次提交后生成的版本号,例如为r224. 2.登录到s ...

  2. 64位windows下mysql安装

    登入mysql官网https://www.mysql.com/downloads/,点击Community,选择MySQL on Windows,选择MySQL Installer,选择MySQL S ...

  3. STM8S103 PB4和PB5

    STM8S103的PB4和PB5只能配置成开漏输出,用作I2C通讯: PB4和PB5不能配置为推挽输出,来控制LED之类的,因为内部没有上拉电阻,IO拉高电压只有1.8V左右,要想控制LED,只能通过 ...

  4. 关于ListView和GridView的应用

    这两篇博文分别讲的很好: ListView: http://www.cnblogs.com/noTice520/archive/2011/12/05/2276379.html GridViw: htt ...

  5. MYSQL数据库索引类型都有哪些?

    索引类型: B-TREE索引,哈希索引•B-TREE索引加速了数据访问,因为存储引擎不会扫描整个表得到需要的数据.相反,它从根节点开始.根节点保存了指向子节点的指针,并且存储引擎会根据指针寻找数据.它 ...

  6. 分享一道阿里巴巴(蚂蚁金服)Java笔试题

    编写一个函数验证一个给定的9x9 整数矩阵是否符合数独的特性:a) 每个单元格数字为 1-9b) 每行的9个数不重复c) 每列的9个数不重复d) 如图中分割的9个小3x3矩阵,每个小矩阵里9个数不重复 ...

  7. Debug 的使用

    R 命令:查看.修改寄存器的内容 -r:查看寄存器的内容 CS=0AF9,IP=0100,也就是说内存 0AF9:0100 处的指令为 CPU 当前要读取.执行的指令 Debug 也列出了 CS:IP ...

  8. ndnarry元素处理

    元素计算函数 ceil(): 向上最接近的整数,参数是 number 或 array floor(): 向下最接近的整数,参数是 number 或 array rint(): 四舍五入,参数是 num ...

  9. 查看自己U盘格式

    转自:https://zhidao.baidu.com/question/220844418.html 选中U盘后,鼠标右键单击,选项菜单中点击属性,出的的属性窗口中的“常规”项里边就有U盘的基本信息 ...

  10. LCS(详解)

    一,问题描述 给定两个字符串,求解这两个字符串的最长公共子序列(Longest Common Sequence).比如字符串1:BDCABA:字符串2:ABCBDAB 则这两个字符串的最长公共子序列长 ...