http://blog.csdn.net/sunnytina/article/details/51895406

Android使用Direct Textures提高glReadPixels、glTexImage2D性能 http://www.jianshu.com/p/1fa36461fc6f

Android中的EGL扩展 http://ju.outofmemory.cn/entry/146313

Using the EGL* Image Extension

The conventional way to copy an image into a texture is with either the glTexImage2D() orglTexSubImage2D() methods, but these methods are slow because of how they convert the format of the image data as it is copied. These are really intended for loading static images, not dynamic ones. Moving images between OpenGL* ES textures and another graphics API quickly requires direct access to the memory in which the texture image is stored. Ideally, the image should be copied by an accelerated 2D BitBlt, but that requires the physical address of the image. Otherwise, you can use amemcpy() method instead, which only requires the virtual address of the image.

The EGL* image extension is an extension to the EGL* standard defined by the Khronos Group that provides the virtual or physical addresses of an OpenGL* ES texture. With these addresses, images can be copied to or from OpenGL* ES textures quickly. This technique is so fast that it is possible to stream uncompressed video into OpenGL* ES, but doing so typically requires converting the pixels from the YUV to RGB color space, which is beyond the scope of this article.

The official name of the EGL* image extension is GL_OES_EGL_image. It is widely supported on most platforms, including Android. To confirm which extensions are available on any platform, use the functions provided in Listing 4 to return strings that list all of the available extensions by name for your OpenGL* ES and EGL* drivers.

Listing 4. Checking for available OpenGL* ES and EGL* extensions

glGetString(GL_EXTENSIONS);
eglQueryString(eglGetCurrentDisplay(), EGL_EXTENSIONS);

The header file eglext.h defines the names of the rendering surface types that the EGL* and OpenGL* ES drivers for your platform support. Table 1 provides a summary of the EGL* image surface types that are available for Android. Note that Android lists support for the EGL_KHR_image_pixmap extension, but it is actually the EGL_NATIVE_BUFFER_ANDROID surface type that you must use, notEGL_NATIVE_PIXMAP_KHR.

Table 1. Surface types for EGL* images on Android

Extension Surface type
EGL_NATIVE_PIXMAP_KHR Pixmap surface (not available on Android)
EGL_GL_TEXTURE_2D_KHR Conventional 2D texture
EGL_GL_TEXTURE_3D_KHR Conventional 3D texture
EGL_GL_RENDERBUFFER_KHR Render buffer surface for glReadPixels()
EGL_NATIVE_BUFFER_ANDROID For Android’s native graphics API

The code in Listing 5 shows how to use the EGL* image extension in two ways. First, on the Android platform, a native GraphicBuffer surface is created and locked. This buffer can be accessed for rendering while it is locked. When this buffer is unlocked, it can be imported into a new EGL* image with the ClientBufferAddress parameter to eglCreateImageKHR(). This EGL* image is then bound to GL_TEXTURE_2D with glEGLImageTargetTexture2DOES(), to be used as any texture can be used in OpenGL* ES. This is accomplished without ever copying the image, as the native GraphicBufferand the OpenGL* ES texture are actually sharing the same image data. This example demonstrates how images can be exchanged quickly between OpenGL* ES and Android or any 2D API on the Android platform. Note that the GraphicBuffer class is only available in the Android framework API, not the NDK.

If you are not using Android, you can still import images into OpenGL* ES textures in the same way. Set the ClientBufferAddress to point to your image data, and set the SurfaceType asEGL_GL_TEXTURE_2D_KHR. Refer to your eglext.h include file for a complete list of the surface types that are available on your platform. Use eglQuerySurface() to obtain the address, pitch (stride), and origin of the new EGL* image buffer after it is created. Be sure to use eglGetError() after each call to the EGL* to check for any returned errors.

Listing 5. Example of using the EGL* image extension with Android

#include <EGL/eglext.h>
#include <GLES2/gl2ext.h>
    
#ifdef    ANDROID
    GraphicBuffer * pGraphicBuffer = new GraphicBuffer(ImageWidth, ImageHeight, PIXEL_FORMAT_RGB_565, GraphicBuffer::USAGE_SW_WRITE_OFTEN | GraphicBuffer::USAGE_HW_TEXTURE);

// Lock the buffer to get a pointer
    unsigned char * pBitmap = NULL;
    pGraphicBuffer->lock(GraphicBuffer::USAGE_SW_WRITE_OFTEN,(void **)&pBitmap);

// Write 2D image to pBitmap

// Unlock to allow OpenGL ES to use it
    pGraphicBuffer->unlock();

EGLClientBuffer ClientBufferAddress = pGraphicBuffer->getNativeBuffer();
EGLint SurfaceType = EGL_NATIVE_BUFFER_ANDROID;
#else
EGLint SurfaceType = EGL_GL_TEXTURE_2D_KHR;
#endif

// Make an EGL Image at the same address of the native client buffer
EGLDisplay eglDisplayHandle = eglGetDisplay(EGL_DEFAULT_DISPLAY);

// Create an EGL Image with these attributes
EGLint eglImageAttributes[] = {EGL_WIDTH, ImageWidth, EGL_HEIGHT, ImageHeight, EGL_MATCH_FORMAT_KHR,  EGL_FORMAT_RGB_565_KHR, EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE};

EGLImageKHR eglImageHandle = eglCreateImageKHR(eglDisplayHandle, EGL_NO_CONTEXT, SurfaceType, ClientBufferAddress, eglImageAttributes);

// Create a texture and bind it to GL_TEXTURE_2D
EGLint TextureHandle;
glGenTextures(1, &TextureHandle);
glBindTexture(GL_TEXTURE_2D, TextureHandle);

// Attach the EGL Image to the same texture
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, eglImageHandle);
    
// Get the address and pitch (stride) of the new texture image
eglQuerySurface(eglDisplayHandle, eglImageHandle, EGL_BITMAP_POINTER_KHR, &BitmapAddress);
eglQuerySurface(eglDisplayHandle, eglImageHandle, EGL_BITMAP_PITCH_KHR, &BitmapPitch);
eglQuerySurface(eglDisplayHandle, eglImageHandle, EGL_BITMAP_ORIGIN_KHR, &BitmapOrigin);
    
// Check for errors after each call to the EGL
if (eglGetError() != EGL_SUCCESS)
    break;
    
// Delete the EGL Image to free the memory when done
eglDestroyImageKHR(eglDisplayHandle, eglImageHandle);

Conclusion

One of the best ways to update an application with a tired 2D GUI is to exploit the accelerated OpenGL* ES features of Android on the Intel® Atom™ platform. Even though 2D and 3D are really different paradigms, the combination of the two is powerful. The trick is to make them cooperate by either sharing the frame buffer or sharing images through textures and the EGL* image extension. Use of this extension with OpenGL* ES is essential for achieving a good user experience, because the conventional method of loading textures with glTexImage2D() is too slow for dynamic images. Fortunately, this extension is well supported on most embedded platforms today, including Android.

https://software.intel.com/en-us/articles/using-opengl-es-to-accelerate-apps-with-legacy-2d-guis

EGLImage与纹理的更多相关文章

  1. OpenGL: 纹理采样 texture sample

    Sampler (GLSL) Sampler通常是在Fragment shader(片元着色器)内定义的,这是一个uniform类型的变量,即处理不同的片元时这个变量是一致不变的.一个sampler和 ...

  2. CSharpGL(10)两个纹理叠加

    CSharpGL(10)两个纹理叠加 本文很简单,只说明如何用shader实现叠加两个纹理的效果. 另外,最近CSharpGL对渲染框架做了修改,清理一些别扭的内容(DoRender()前后的事件都去 ...

  3. CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探

    CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码 ...

  4. D3D三层Texture纹理经像素着色器实现渲染YUV420P

    简单记录一下这两天用Texture实现渲染YUV420P的一些要点. 在视频播放的过程中,有的时候解码出来的数据是YUV420P的.表面(surface)通过设置参数是可以渲染YUV420P的,但Te ...

  5. 【转】OpenGL多线程创建纹理,附加我的测试结果

    原文地址 http://www.cnblogs.com/mazhenyu/archive/2010/04/29/1724190.html 关于这个问题以前只知道多个线程不能同时使用一个RC,结果为了能 ...

  6. Mipmap与纹理过滤

    为了加快渲染速度和减少纹理锯齿,贴图被处理成由一系列被预先计算和优化过的图片组成的文件,这样的贴图被称为Mipmap. 使用DirectX Texture Tool(DX自带工具)预生成Mipmap ...

  7. WebGL入门教程(五)-webgl纹理

    前面文章: WebGL入门教程(一)-初识webgl WebGL入门教程(二)-webgl绘制三角形 WebGL入门教程(三)-webgl动画 WebGL入门教程(四)-webgl颜色 这里就需要用到 ...

  8. [转]各种移动GPU压缩纹理的使用方法

    介绍了各种移动设备所使用的GPU,以及各个GPU所支持的压缩纹理的格式和使用方法.1. 移动GPU大全 目前移动市场的GPU主要有四大厂商系列:1)Imagination Technologies的P ...

  9. [Unity] Shader(着色器)之纹理贴图

    在Shader中,我们除了可以设定各种光线处理外,还可以增加纹理贴图. 使用 settexture 命令可以为着色器指定纹理. 示例代码: Shader "Sbin/ff2" { ...

随机推荐

  1. Servlet Cookie 处理

    Servlet Cookie 处理 Cookie 是存储在客户端计算机上的文本文件,并保留了各种跟踪信息.Java Servlet 显然支持 HTTP Cookie. 识别返回用户包括三个步骤: 服务 ...

  2. kafka 集群--3个broker 3个zookeeper创建实战

    准备工作: 1. 准备3台机器,IP地址分别为:192.168.0.10,192.168.0.11,192.168.0.12 2. 下载kafka稳定版本,我的版本为:kafka_2.9.2-0.8. ...

  3. 笔记-Android学习历程

    1. Junit 配置:在manifest节点下 写入instrumentation,在其兄弟节点下配置application <instrumentation android:name=&qu ...

  4. Python中的图像处理

    第 1 章 基本的图像操作和处理 本章讲解操作和处理图像的基础知识,将通过大量示例介绍处理图像所需的 Python 工具包,并介绍用于读取图像.图像转换和缩放.计算导数.画图和保存结果等的基本工具.这 ...

  5. Machine Learning第十周笔记:大规模机器学习

    博客已经迁移到Marcovaldo's blog (http://marcovaldong.github.io/) 刚刚完毕了Andrew Ng在Cousera上的Machine Learning的第 ...

  6. hibernate createQuery查询传递参数的两种方式

    String hql = "from InventoryTask it where it.orgId=:orgId"; Session session = getSession() ...

  7. docker学习笔记(2) 构建镜像

    一.手动构建一个简单镜像 我们以构建nginx的docker镜像为例:手动构建镜像 docker pull centos    安装基础镜像docker run --name mynginx -it ...

  8. using 关键字的使用

    using 关键字的使用主要分为两种类型:using declaration(using 声明)和using directive(using 命令): using 声明:引入特定名称空间中的一个成员. ...

  9. How to make asynchronous HTTP requests in PHP 4种PHP异步执行的常用方式

    [是否等待返回就执行下一步] How to make asynchronous HTTP requests in PHP - Stack Overflow https://stackoverflow. ...

  10. <2013 08 12> Andrew:C语言的一点心得

    C语言的特点在于,这是少见的中级语言(介于机器汇编和高级语言之间),因此它极其紧密地与特定机器架构.编译器.操作系统.库等基本概念相连.在底层,人们可以少量的甚至不使用汇编,但是不能不使用C.它以一种 ...