题目

神题!!只有\(POI\)出得出来的神题!!

只能说好像懂了,不想听蒟蒻废话就右转\(dalao\)的博客

目前网上除官方外仅三篇题解,由于推论无法直观得出且有点复杂,难免不好理解,手玩数据最重要

做法

由于都是以\(H^x(0)\)开始,一下简写成\(H^x\)

性质:

\(~~~~~1.\)斐波那契堆:\(H^x=H^{x-1}+H^{x-2}\)(\(0\longrightarrow 1\longrightarrow 10\longrightarrow 101\longrightarrow 10110\))

\(~~~~~2.\)\(x\)为偶数时\(0\)结尾,为奇数时\(1\)结尾

\(~~~~~3.\)定义\(G^-1\)为\(H^1\)的逆操作,则\(s_1\)为\(s_2\)的子串时,逆操作也有此性质

\(~~~~~4.\)出现\(00\)一定不合法

\(~~~~~5.\)出现\(111\)时则一定不合法,把这个子串化成一般形式为\(10101+0\)

\(~~~~~6.\)\(x≥5\)且\(x\)为奇数时有后缀\(10101\),也就是说\(x≥5\)且\(x+1=0\)时一定不合法

神奇的推导:

\(~~~~~\)我们把所有的\(x\),写成序列\(\{a_1,a_2...a_{n-1},a_n\}\)的形式

\(~~~~~\)当\(\forall v\in \{a_1,a_2...a_{n-1},a_n\}>0\)时我们可以集体减\(1\)

\(~~~~~\)所以考虑\(0\)的特殊情况:

\(~~~~~\)前面为偶数一定不合法(性质\(2\)),考虑奇数:\((1:10\),合并转换为\(2)\);\((3:1010\),转换为两个\(2)\);

\(~~~~~\)剩下的都不合法了

特殊情况:

\(~~~~~\)由于性质\(4\)三子串的出现我们不好判断,而且两个\(1\)转换后不合法但是实际是合法的

\(~~~~~\)\(11\)出现在中间后面只能接\(0\),这种情况会合并的,\(11+x\)按之前的方法会判非法

\(~~~~~\)仅考虑在后面的情况,我们是可以直接去掉最后的\(1\)的,而\(111\)这种非法情况去掉后依然会判非法不用管了

\(~~~~~\)相似的,末尾\(3\)也会出现这种特殊情况改为\(2\)

My complete code

代码是\(copy\)来的

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 100100
using namespace std;
int n;
int a[M];
bool Solve(){
int i;
while(n>1){
if(!a[1]) a[1]=2;
if(a[n]==1) n--;
else if(a[n]==3) a[n]=2;
for(i=n;i;i--)
if(!a[i]){
if(a[i-1]==1)
a[i-1]=2,a[i]=-1;
else if(a[i-1]==3)
a[i-1]=2,a[i]=2;
else
return false;
}
int temp=0;
for(i=1;i<=n;i++)
if(a[i]!=-1)
a[++temp]=a[i];
n=temp;
for(i=1;i<=n;i++)
a[i]--;
}
return true;
}
int main(){
int T,i;
for(cin>>T;T;T--){
cin>>n;
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
puts(Solve()?"TAK":"NIE");
}
return 0;
}

[POI2009]Slw的更多相关文章

  1. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  2. BZOJ 1115: [POI2009]石子游戏Kam

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 545[Submit][Stat ...

  3. BZOJ 1142: [POI2009]Tab

    1142: [POI2009]Tab Time Limit: 40 Sec  Memory Limit: 162 MBSubmit: 213  Solved: 80[Submit][Status][D ...

  4. 【BZOJ】【1115】【POI2009】石子游戏KAM

    博弈论 这个题……一看就觉得很捉急啊= =肿么办? 灵光一现:差分一下~ 那么我们看一下差分以后,从第 i 堆中拿走 k 个石子变成了:a[i]-=k; a[i+1]+=k; 嗯这就转化成了阶梯博弈! ...

  5. bzoj 1133: [POI2009]Kon dp

    1133: [POI2009]Kon Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 242  Solved: 81[Submit][Status][D ...

  6. bzoj 1138: [POI2009]Baj 最短回文路 dp优化

    1138: [POI2009]Baj 最短回文路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 161  Solved: 48[Submit][Sta ...

  7. BZOJ1135: [POI2009]Lyz

    1135: [POI2009]Lyz Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 264  Solved: 106[Submit][Status] ...

  8. BZOJ1119: [POI2009]SLO

    1119: [POI2009]SLO Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 379  Solved: 181[Submit][Status] ...

  9. BZOJ1119[POI2009]SLO && BZOJ1697[Usaco2007 Feb]Cow Sorting牛排序

    Problem J: [POI2009]SLO Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 622  Solved: 302[Submit][Sta ...

随机推荐

  1. 基于HTML5 audio元素播放声音jQuery小插件

    by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=1609 一.前面的些唠 ...

  2. shell学习五十八天----/proc文件系统

    /proc文件系统 前言:linux中的/proc文件系统,由一组文件夹和文件组成,挂载(mount)与/proc文件夹下. /proc文件系统是一种虚拟文件系统,以文件系统文件夹和文件形式,提供一个 ...

  3. php+redis秒杀

    啥都不说了,看代码 前台: 包括开始和结束的秒杀时间,倒计时插件,统一看一遍再去写代码,思路会更清晰. js文件引入一个.min.js和一个插件js(在下面,自己复制吧) // JavaScript ...

  4. SSH总结(一)

    其实学习struts等框架,不仅要知道怎么用,我们还应该多去看看框架的源码,知道为什么可以这样使用,凡事都知道为什么,以这样的态度学习,我们才能更加深一步的理解原理好实现方式,本类博客主要是个人学习总 ...

  5. 视觉SLAM之词袋(bag of words) 模型与K-means聚类算法浅析(2)

    聚类概念: 聚类:简单地说就是把相似的东西分到一组.同 Classification (分类)不同,分类应属于监督学习.而在聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到 ...

  6. ul和li弄的图片列表

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. 海康、大华NVR网络硬盘录像机录像无插件全平台访问实现—录像回放时间轴功能实现方法

    在之前的博文中我们有介绍方案*NVR硬件录像机web无插件播放方案(支持取特定时间段视频流)*:该片博文旨在介绍时间轴功能的实现和相关接口的调用: 时间轴样式展示: 问题分析 对于 时间轴的展示实现需 ...

  8. angularjs 发送ajax请求的问题

    在angularjs中使用 ajax 如果使用 jquery的 ajax发送请求会遇到结果返回了,但是页面的值却没有改变,如: $scope.queryNameMatch = function() { ...

  9. jquery拓展插件-popup弹窗

    css:<style> /* 公共弹出层 */ .popWrap{position: fixed;left: 0;top: 0; width: 100%;height: 100%;z-in ...

  10. 如何枚举 Windows 顶级桌面窗口?

    bool is_top_level_window(HWND hwnd) { if (!IsWindow(hwnd)) return false; DWORD dw_style = GetWindowL ...