http://codeforces.com/problemset/problem/889/E

题解

首先我们观察到在每次取模的过程中一定会有一次的结果是\(a_i-1\),因为如果不是,我们可以调整,答案肯定是会更优的。

于是我们的有用状态就变成了\(O(n)\)级别。

我们可以对于一个状态,把它表示为\((a,b)\),表示前\(i\)个数,当前取完模的结果为\(a\),总和写成\(i*a+b\)的形式后最大的\(b\)。

我们的转移每次要把\(a\)变成\(a%v\),再添加一个新状态\(v-1\)。

转移讨论一下。

代码

#include<bits/stdc++.h>
#define N 200009
using namespace std;
typedef long long ll;
const int mod=1e9+7;
map<ll,ll>f;
map<ll,ll>::iterator it;
int n;
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
int main(){
n=rd();
f[rd()-1]=0;
for(int i=2;i<=n;++i){
ll x=rd();
while(!f.empty()){
it=f.end();--it;
ll a=it->first,b=it->second;
if(a<x)break;
f.erase(it);
f[x-1]=max(f[x-1],b+1ll*(i-1)*(a-a%x-x));
f[a%x]=max(f[a%x],b+1ll*(i-1)*(a-a%x));
}
}
ll ans=0;
for(it=f.begin();it!=f.end();++it)ans=max(ans,it->first*n+it->second);
cout<<ans;
return 0;
}

CF889E Mod Mod Mod的更多相关文章

  1. FZU 1752 A^B mod C(快速加、快速幂)

    题目链接: 传送门 A^B mod C Time Limit: 1000MS     Memory Limit: 65536K 思路 快速加和快速幂同时运用,在快速加的时候由于取模耗费不少时间TLE了 ...

  2. hdu.1104.Remainder(mod && ‘%’ 的区别 && 数论(k*m))

    Remainder Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  3. 关于n!mod p

    2016.1.26 让我们来研究一下关于n!在mod p下的性质,当然这里p是质数. 首先n!=a*pe,其中p不可整除a.我们现在来做两件事情,求e和a mod p. 显然,n/p表示[1,n]中p ...

  4. 取模(mod)

    取模(mod) [题目描述] 有一个整数a和n个整数b_1, …, b_n.在这些数中选出若干个数并重新排列,得到c_1,…, c_r.我们想保证a mod c_1 mod c_2 mod … mod ...

  5. BSGS模版 a^x=b ( mod c)

    kuangbin的BSGS: c为素数: #define MOD 76543 int hs[MOD],head[MOD],next[MOD],id[MOD],top; void insert(int ...

  6. Mod 与 RequireJS/SeaJS 的那些事

    本文的目的是为了能大让家更好的认识 Mod,之所以引入 RequireJS/SeaJS 的对比主要是应大家要求更清晰的对比应用场景,并不是为了比较出孰胜孰劣,RequireJS 和 SeaJS 都是模 ...

  7. C(n+m,m) mod p的一类算法

    Lucas定理 A.B是非负整数,p是质数.AB写成p进制:A=a[n]a[n-1]...a[0],B=b[n]b[n-1]...b[0]. 则组合数C(A,B)与C(a[n],b[n])*C(a[n ...

  8. Mod in math

    An Introduction to Modular Math When we divide two integers we will have an equation that looks like ...

  9. 51nod 1008 N的阶乘 mod P

    输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %)   例如:n = 10, P = 11,10! = 3628800 3628800 % 11 = 10   Input 两 ...

  10. 51 Nod 1008 N的阶乘 mod P【Java大数乱搞】

    1008 N的阶乘 mod P 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %)   例如:n ...

随机推荐

  1. 【QT开发】QT在windows下的exe应用程序如何在别人的电脑上直接运行

     当你利用QT编译了一个可执行程序,需要将这个可执行程序拷贝到别人的电脑上运行,这个时候除了这个可执行程序外,还需要支持的库才可用运行.一般来说通过下面的方法可以实现.     首先,需要看你用的是什 ...

  2. [19/10/13-星期日] Python中的函数

    一.函数 # 第五章 函数 ## 函数简介(function) - 函数也是一个对象 - 对象是内存中专门用来存储数据的一块区域 - 函数可以用来保存一些可执行的代码,并且可以在需要时,对这些语句进行 ...

  3. Linux文件拷贝(6)

    本篇介绍文件拷贝操作,主要讲两个命令: 命令 对应英文 作用 tree[目录名] tree 以树状图列出文件目录结构 cp 源文件 目标文件 copy 复制文件或者目录 tree tree命令可以将一 ...

  4. 在centos6.4下安装python3.5

    1.安装依赖包 ./configure --prefix=/usr/local/python3.5 --enable-shared make && make install yum g ...

  5. 针对Vue相同路由不同参数的刷新问题

    在使用vue和vue-router开发spa应用时,我们会遇到这样一种问题.当页面跳转时,组件本身并没有发生改变: // 路由映射关系'/form/:type' // 当前页面路由/form/shop ...

  6. P2586 [ZJOI2008]杀蚂蚁

    传送门 快乐模拟,修身养性 代码长度其实还好,主要是细节多 只要知道一些计算几何基础知识即可快乐模拟,按着题目要求一步步实现就行啦 注意仔细读题,蚂蚁每 $5$ 秒乱走一次的时候是只要能走就走了,不一 ...

  7. 一张图说明移动前端开发与web前端开发的区别

  8. 6.css3定位--position

    ⑴Static默认值,没有定位. ⑵Absolute绝对定位.后面的元素会补上原来偏移的位置. ⑶Relative相对定位.后面的元素不会补上原来偏移的位置. ⑷Fixed绝对定位.相对于浏览器窗口固 ...

  9. Ubuntu 18.04机器学习环境安装

    安装net-tools sudo apt install net-tools #查看IP ifconfig #ssh服务是否安装 ps -e | grep ssh #安装openssh-server ...

  10. hashlib模块和logging模块

    hashlib Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等. 我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值: import hashlib m=hashli ...