CF 82 D.Two out of Three
前言
全网唯一不同题解
设 \(f[i][j]\) 表示第 \(i\) 次选取留下来的数是 \(k\) 的最小花费
枚举前面的留下来的点 \(k\) 当前能留下的点只有 \((2*i),(2*i+1),k\) 中的一个,时间复杂度 \(O(n^2)\)
选取次数是 \(n/2\) 向上取整。因为最后什么点也不留下,\(a[n+1]=0\),所以答案可以为 \(f[m][n+1](m=n/2向上取整)\)
另外我没有写记录路径,记录一下也挺简单
Code
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define INF 0x3f3f3f3f
using namespace std;
inline int read() {
int x=0,f=1; char ch=getchar();
while(ch<'0' || ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') { x=(x<<3)+(x<<1)+(ch^48); ch=getchar(); }
return x * f;
}
const int N = 1007;
int n;
int a[N];
int f[N][N];
inline int Const(int x,int y) {
return max(a[x], a[y]);
}
int main()
{
n = read();
for(int i=1;i<=n;++i)
a[i] = read();
memset(f, 0x3f, sizeof(f));
f[1][1] = max(a[2],a[3]); f[1][2] = max(a[1],a[3]); f[1][3] = max(a[1],a[2]);
int m = n&1 ? n/2+1 : n/2;
for(int i=2;i<=m;++i) {
int x = 2*i, y = 2*i+1; // i次选取的最后两个数
for(int k=1;k<x;++k) { //枚举上一次留下的数
f[i][x] = min(f[i][x], f[i-1][k]+Const(y,k));
f[i][y] = min(f[i][y], f[i-1][k]+Const(x,k));
f[i][k] = min(f[i][k], f[i-1][k]+Const(x,y));
}
}
int ans = f[m][n+1];
printf("%d\n",ans);
return 0;
}
update
加上路径记录版
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define INF 0x3f3f3f3f
using namespace std;
inline int read() {
int x=0,f=1; char ch=getchar();
while(ch<'0' || ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') { x=(x<<3)+(x<<1)+(ch^48); ch=getchar(); }
return x * f;
}
const int N = 1007;
int n;
int a[N];
int f[N][N];
struct operation {
int x,y,pre;
}p[N][N];
inline int Const(int x,int y) {
return max(a[x], a[y]);
}
void output(int now,int pos) {
if(now == 0) return ;
output(now-1,p[now][pos].pre);
if(a[p[now][pos].x])
printf("%d ",p[now][pos].x);
if(a[p[now][pos].y])
printf("%d",p[now][pos].y);
puts("");
}
int main()
{
n = read();
for(int i=1;i<=n;++i)
a[i] = read();
memset(f, 0x3f, sizeof(f));
f[1][1] = max(a[2],a[3]); f[1][2] = max(a[1],a[3]); f[1][3] = max(a[1],a[2]);
p[1][1] = (operation)<%2,3,0%>;
p[1][2] = (operation)<%1,3,0%>;
p[1][3] = (operation)<%1,2,0%>;
int m = n&1 ? n/2+1 : n/2;
for(int i=2;i<=m;++i) {
int x = 2*i, y = 2*i+1; // i次选取的最后两个数
for(int k=1;k<x;++k) { //枚举上一次留下的数
if(f[i-1][k]+Const(y,k) < f[i][x]) {
f[i][x] = f[i-1][k]+Const(y,k);
p[i][x] = (operation)<%k,y,k%>;
}
if(f[i-1][k]+Const(x,k) < f[i][y]) {
f[i][y] = f[i-1][k]+Const(x,k);
p[i][y] = (operation)<%k,x,k%>;
}
if(f[i-1][k]+Const(x,y) < f[i][k]) {
f[i][k] = f[i-1][k]+Const(x,y);
p[i][k] = (operation)<%x,y,k%>;
}
// f[i][x] = min(f[i][x], f[i-1][k]+Const(y,k));
// f[i][y] = min(f[i][y], f[i-1][k]+Const(x,k));
// f[i][k] = min(f[i][k], f[i-1][k]+Const(x,y));
}
}
int ans = f[m][n+1];
printf("%d\n",ans);
output(m,n+1);
return 0;
}
CF 82 D.Two out of Three的更多相关文章
- Android shape与selector标签使用
原文地址:Android shape与selector标签使用 Android中提供一种xml的方式,让我们可以自由地定义背景,比较常用的就是shape标签和selector标签 shape shap ...
- [CF百场计划]#3 Educational Codeforces Round 82 (Rated for Div. 2)
A. Erasing Zeroes Description You are given a string \(s\). Each character is either 0 or 1. You wan ...
- ORA-00494: enqueue [CF] held for too long (more than 900 seconds) by 'inst 1, osid 5166'
凌晨收到同事电话,反馈应用程序访问Oracle数据库时报错,当时现场现象确认: 1. 应用程序访问不了数据库,使用SQL Developer测试发现访问不了数据库.报ORA-12570 TNS:pac ...
- cf之路,1,Codeforces Round #345 (Div. 2)
cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅..... ...
- cf Round 613
A.Peter and Snow Blower(计算几何) 给定一个点和一个多边形,求出这个多边形绕这个点旋转一圈后形成的面积.保证这个点不在多边形内. 画个图能明白 这个图形是一个圆环,那么就是这个 ...
- ARC下OC对象和CF对象之间的桥接(bridge)
在开发iOS应用程序时我们有时会用到Core Foundation对象简称CF,例如Core Graphics.Core Text,并且我们可能需要将CF对象和OC对象进行互相转化,我们知道,ARC环 ...
- [Recommendation System] 推荐系统之协同过滤(CF)算法详解和实现
1 集体智慧和协同过滤 1.1 什么是集体智慧(社会计算)? 集体智慧 (Collective Intelligence) 并不是 Web2.0 时代特有的,只是在 Web2.0 时代,大家在 Web ...
- CF memsql Start[c]UP 2.0 A
CF memsql Start[c]UP 2.0 A A. Golden System time limit per test 1 second memory limit per test 256 m ...
- CF memsql Start[c]UP 2.0 B
CF memsql Start[c]UP 2.0 B B. Distributed Join time limit per test 1 second memory limit per test 25 ...
随机推荐
- 如何快速优雅的解决:ORA-02290: 违反检查约束条件 异常问题
在向oracle保存数据时,控制台报错如下: 很明显是保存时,该表的设计不允许某个字段非空导致的,但由于该表的数量较多,采用断点的方式有太过麻烦, 这里笔者采用 oracle 的客户端连接工具orac ...
- functional-page-navigator 组件
functional-page-navigator 组件:是一个非常强大的组件,用于跳转插件的功能页 functional-page-navigator组件的属性: version:类型 字符串 跳转 ...
- C# 防火墙操作之特定程序
将特定程序加入防火墙组,与将特定端口加入防火墙流程类似.详情见“C# 防火墙操作之特定端口”.其主要代码为: /// <summary> /// 允许应用程序通过防火墙 /// </ ...
- 第三方框架:EventBus
1 研发背景 案例:我们在主页点收藏按钮,未登录状态,跳登录界面,在登录界面跳注册页面,注册成功,关闭注册页面,关闭登录页面,回到主页,刷新item列表和登录状态. 我们一般会用到发送广播和接收广播来 ...
- .net 4.5 Test Async Task 异步测试
using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using Syst ...
- 九、MySQL报错( (1292, u"Truncated incorrect DOUBLE value: '424a000000066'") result = self._query(query))
1.数据库sql语句:SELECT seat_id FROM netsale_order_seat os join netsale_order nor on os.order_code=nor.ord ...
- 树的基本概念以及java实现二叉树
树具有的特点有: (1)每个结点有零个或多个子结点 (2)没有父节点的结点称为根节点 (3)每一个非根结点有且只有一个父节点 (4)除了根结点外,每个子结点可以分为多个不相交的子树. 树的基本术语 ...
- Microsoft SQL Server 2008 R2官方中文版(SQL2008下载)
Microsoft SQL Server 2008 R2官方中文版(SQL2008下载) http://www.2cto.com/database/201308/235349.html
- 《Using Databases with Python》Week1 Object Oriented Python 课堂笔记
Coursera课程<Using Databases with Python> 密歇根大学 Charles Severance Week1 Object Oriented Python U ...
- Windows 10更新后无法启动Dolby音频驱动程序
在电脑更新Windows 10 1903版本后,重启出现如下问题: 经查,这与驱动强制签名有关.解决方法如下: 打开"设置"->"更新与安全"->& ...