中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结
标签:数学方法——数论
阅读体验:https://zybuluo.com/Junlier/note/1300035
前置浅讲
前置知识点:\(Exgcd\)
这两个东西都是用来解同余方程组的
形如
\begin{aligned}
x\equiv B_1(mod\ W_1)\\
x\equiv B_2(mod\ W_2)\\
\cdots\\
x\equiv B_n(mod\ W_n)\\
\end{aligned}
\right.
$$给定$B_i$和$W_i$,求解唯一解$x$满足上述方程组
PS:**个人认为自己的$ExCRT$讲得好一些**
## 中国剩余定理(CRT)
心理准备:这里我觉得自己讲得不是很清晰,有点说不清的感觉
在上述方程中,存在一种特殊情况,即$W_i$全部互质
~~有什么用呢,用处就是可以用中国剩余定理(孙子定理)~~</a>
首先,古人告诉我们:
解上面那个方程相当于对于每一个$B_i$:
> 把$B_i$变成$1$,其他的$B$变成$0$的解$x$
然后答案就是$\sum(x*B_i)$
也就是解每一个形如下面的方程组的解$x$在乘上$B_i$:
\]
\left{
\begin{aligned}
x\equiv 0(mod\ W_1)\
x\equiv 0(mod\ W_2)\
\cdots\
x\equiv 1(mod\ W_i)\
\cdots\
x\equiv 0(mod\ W_n)\
\end{aligned}
\right.
~~别问我为什么,我不知道~~
那么考虑怎么求呢?
记$M$为$\prod W_i$
显然解$x$必须是$M/W_i$的倍数
那么方程变为
\]
(M/W_i)y\equiv 1(\mod W_i)
```
lst CRT()
{
lst tot=1,Ans=0;
for(int i=1;i<=n;++i)tot*=W[i];
for(int i=1;i<=n;++i)
{
lst now=tot/W[i],x,y;
Exgcd(now,W[i],x,y);//不需要我讲吧!
x=(x%W[i]+W[i])%W[i];//这个取膜貌似很关键诶
Ans=(Ans+Mult(Mult(x,now,tot),B[i],tot)+tot)%tot;//Mult是快速乘
}return Ans>=0?Ans:Ans+tot;
}
```
## 扩展中国剩余定理(ExCRT)
再把方程组放一遍:
\]
\left{
\begin{aligned}
x\equiv B_1(mod\ W_1)\
x\equiv B_2(mod\ W_2)\
\cdots\
x\equiv B_n(mod\ W_n)\
\end{aligned}
\right.
那么我们考虑对所有的方程一个一个求解
假设我们求解到了第$i$个方程
前面的方程组解出来答案是$Ans$
那我们是不是可以把之前求解的答案看做一个这样的同余方程:
\]
x\equiv Ans(\mod M)
如果看不出请补一下同余方程。。。
很显然这些都是已知量了吧
那我们为了求出前$i$个方程的解就相当于要解出下面这个方程组了对不对
\]
\left{
\begin{aligned}
x\equiv Ans(\mod M) \
x\equiv B_i(\mod W_i)\
\end{aligned}
\right.
可以化为
\]
Ans=B_1x1+A_1=B_2x2+A_2
\therefore B_1x1-B_2x2=A_2-A_1
\]
B_1x-B_2y=Gcd(B_1,B_2)
$$x1=x'×\dfrac{A_2-A_1}{GCD(B_1,B_2)}$$我们再回代就得到了新解$Ans$\]
Ans=B_1x1+A_1
模板题:[洛谷P4777 【模板】扩展中国剩余定理(EXCRT)](https://www.luogu.org/problemnew/show/P4777)
代码:
```
#include<bits/stdc++.h>
#define lst long long
#define ldb double
#define N 100050
using namespace std;
const int Inf=1e9;
lst read()
{
lst s=0,m=0;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')m=1;ch=getchar();}
while( isdigit(ch))s=(s<<3)+(s<<1)+(ch^48),ch=getchar();
return m?-s:s;
}
lst n,Ans,x,y,M;
lst A[N],B[N];
lst qmul(lst x,lst y,lst p)
{
lst ret=0;
while(y)
{
if(y&1)ret=(ret+x)%p;
x=(x+x)%p;y>>=1;
}return ret;
}
lst Exgcd(lst a,lst b,lst &x,lst &y)
{
if(!b){x=1,y=0;return a;}
lst ss=Exgcd(b,a%b,x,y),t;
t=x,x=y,y=t-(a/b)*y; return ss;
}
int main()
{
n=read();
for(int i=1;i<=n;++i)
B[i]=read(),A[i]=read();
Ans=A[1],M=B[1];
//根据上面的详解一步对应一行
for(int i=2;i<=n;++i)
{
lst Get=((A[i]-Ans)%B[i]+B[i])%B[i];
lst GCD=Exgcd(M,B[i],x,y);
x=qmul(x,Get/GCD,B[i]);//qmul是龟速乘
Ans+=M*x;
M*=B[i]/GCD;//这里是更新辅助下一次计算
Ans=(Ans+M)%M;
}printf("%lld\n",Ans);
return 0;
}
```\]
中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结的更多相关文章
- CRT&EXCRT 中国剩余定理及其扩展
前言: 中国剩余定理又名孙子定理.因孙子二字歧义,常以段子形式广泛流传. 中国剩余定理并不是很好理解,我也理解了很多次. CRT 中国剩余定理 中国剩余定理,就是一个解同余方程组的算法. 求满足n个条 ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- 中国剩余定理(crt)和扩展中国剩余定理(excrt)
数论守门员二号 =.= 中国剩余定理: 1.一次同余方程组: 一次同余方程组是指形如x≡ai(mod mi) (i=1,2,…,k)的同余方程构成的组 中国剩余定理的主要用途是解一次同余方程组,其中m ...
- 中国剩余定理(CRT)及其扩展(EXCRT)详解
问题背景 孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)/ poj2891 Strange Way to Express Integers
P4777 [模板]扩展中国剩余定理(EXCRT) excrt模板 我们知道,crt无法处理模数不两两互质的情况 然鹅excrt可以 设当前解到第 i 个方程 设$M=\prod_{j=1}^{i-1 ...
- P4777 【模板】扩展中国剩余定理(EXCRT)&& EXCRT
EXCRT 不保证模数互质 \[\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... ...
- 扩展中国剩余定理 (exCRT) 的证明与练习
原文链接https://www.cnblogs.com/zhouzhendong/p/exCRT.html 扩展中国剩余定理 (exCRT) 的证明与练习 问题模型 给定同余方程组 $$\begin{ ...
- P4777 【模板】扩展中国剩余定理(EXCRT)
思路 中国剩余定理解决的是这样的问题 求x满足 \[ \begin{matrix}x \equiv a_1(mod\ m_1)\\x\equiv a_2(mod\ m_2)\\ \dots\\x\eq ...
- [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)
题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...
随机推荐
- django之logo日志的配置和使用
一:为什么使用日志 假如,在项目调试过程中,在某些地方加上了print()函数,输出了一些调试信息.在项目上线的时候,不要将调试信息暴露出去,但是调试信息还要用,该怎么办?项目测试运行在远端服务器上, ...
- C++ GUI Qt4学习笔记05
C++ GUI Qt4学习笔记05 qtc++正则表达式 QIntValidator -- 只让用户输入整数 QDoubleValidator -- 只让用户输入浮 ...
- Spring配置文件出错
问题描述: Element 'xxxxxxx' cannot have character [children],because the type's content type is element- ...
- linux运维、架构之路-python2.6升级3.6
一.环境 1.系统 [root@m01 ~]# cat /etc/redhat-release CentOS release 6.9 (Final) [root@m01 ~]# uname -r -. ...
- JS循环结构
什么是循环结构? 反复一遍又一遍做着相同(相似)的事情 循环结构的两大要素? 循环条件:什么时候开始,什么时候结束 循环操作:循环体,循环过程中 做了什么 一.while语句 while语句 属于前测 ...
- CSS盒子模型与怪异盒模型
盒子模型(Box Modle)可以用来对元素进行布局,包括内边距,边框,外边距,和实际内容这几个部分. 盒子模型分为两种 第一种是W3c标准的盒子模型(标准盒模型) .第二种IE标准 ...
- SVN 没有弹出输入账号和密的界面
在用TortoiseSVN的时候,点SVN Checkout输入URL之后没有提示要输入账号密码的弹出框,直接跳到下一个界面,解决办法: 因为你在初次登陆svn的时候,点了保存密码的复选框,所以只要清 ...
- EOF和~
输入包含多组数据 while(~scanf("%d",&n))<=> while(scanf("%d",&n)!=EOF)
- Oracle And子句
Oracle And子句 作者:初生不惑 Oracle基础 评论:0 条 Oracle技术QQ群:175248146 在本教程中,将学习如何使用Oracle AND运算符来组合两个或更多的布尔表达式. ...
- [ethereum源码分析](5) 创建新账号
前言 在上一章我们介绍了 ethereum运行开启console 的过程,那么在这一章我们将会介绍如何在以太坊中创建一个新的账号.以下的理解可能存在错误,如果各位大虾发现错误,还望指正. 指令分析 指 ...