生成对抗网络资源 Adversarial Nets Papers
来源:https://github.com/zhangqianhui/AdversarialNetsPapers
AdversarialNetsPapers
The classical Papers about adversarial nets
The First paper
✅ [Generative Adversarial Nets] [Paper] [Code](the first paper about it)
Unclassified
✅ [Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks] [Paper][Code]
✅ [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks] [Paper][Code](Gan with convolutional networks)(ICLR)
✅ [Adversarial Autoencoders] [Paper][Code]
✅ [Generating Images with Perceptual Similarity Metrics based on Deep Networks] [Paper]
✅ [Generating images with recurrent adversarial networks] [Paper][Code]
✅ [Generative Visual Manipulation on the Natural Image Manifold] [Paper][Code]
✅ [Generative Adversarial Text to Image Synthesis] [Paper][Code][code]
✅ [Learning What and Where to Draw] [Paper][Code]
✅ [Adversarial Training for Sketch Retrieval] [Paper]
✅ [Generative Image Modeling using Style and Structure Adversarial Networks] [Paper][Code]
✅ [Generative Adversarial Networks as Variational Training of Energy Based Models] [Paper](ICLR 2017)
✅ [Adversarial Training Methods for Semi-Supervised Text Classification] [Paper][Note]( Ian Goodfellow Paper)
✅ [Learning from Simulated and Unsupervised Images through Adversarial Training] [Paper][code](Apple paper)
✅ [Synthesizing the preferred inputs for neurons in neural networks via deep generator networks] [Paper][Code]
✅ [SalGAN: Visual Saliency Prediction with Generative Adversarial Networks] [Paper][Code]
✅ [Adversarial Feature Learning] [Paper]
Ensemble
✅ [AdaGAN: Boosting Generative Models] [Paper][[Code]](Google Brain)
Clustering
✅ [Unsupervised Learning Using Generative Adversarial Training And Clustering] [Paper][Code](ICLR) ✅ [Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks] [Paper](ICLR)
Image Inpainting
✅ [Semantic Image Inpainting with Perceptual and Contextual Losses] [Paper][Code]
✅ [Context Encoders: Feature Learning by Inpainting] [Paper][Code]
✅ [Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks] [Paper]
✅ [Generative face completion] [Paper][code](CVPR2017)
✅ [Globally and Locally Consistent Image Completion] [MainPAGE](SIGGRAPH 2017)
Joint Probability
✅ [Adversarially Learned Inference][Paper][Code]
Super-Resolution
✅ [Image super-resolution through deep learning ][Code](Just for face dataset)
✅ [Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network] [Paper][Code](Using Deep residual network)
✅ [EnhanceGAN] [Docs][[Code]]
Disocclusion
✅ [Robust LSTM-Autoencoders for Face De-Occlusion in the Wild] [Paper]
Semantic Segmentation
✅ [Semantic Segmentation using Adversarial Networks] [Paper](soumith's paper)
Object Detection
✅ [Perceptual generative adversarial networks for small object detection] [[Paper]](Submitted)
✅ [A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection] [Paper][code](CVPR2017)
RNN
✅ [C-RNN-GAN: Continuous recurrent neural networks with adversarial training] [Paper][Code]
Conditional adversarial
✅ [Conditional Generative Adversarial Nets] [Paper][Code]
✅ [InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets] [Paper][Code]
✅ [Conditional Image Synthesis With Auxiliary Classifier GANs] [Paper][Code](GoogleBrain ICLR 2017)
✅ [Pixel-Level Domain Transfer] [Paper][Code]
✅ [Invertible Conditional GANs for image editing] [Paper][Code]
✅ [Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space] [Paper][Code]
✅ [StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] [Paper][Code]
Video Prediction
✅ [Deep multi-scale video prediction beyond mean square error] [Paper][Code](Yann LeCun's paper)
✅ [Unsupervised Learning for Physical Interaction through Video Prediction] [Paper](Ian Goodfellow's paper)
✅ [Generating Videos with Scene Dynamics] [Paper][Web][Code]
Texture Synthesis & style transfer
✅ [Precomputed real-time texture synthesis with markovian generative adversarial networks] [Paper][Code](ECCV 2016)
Image translation
✅ [UNSUPERVISED CROSS-DOMAIN IMAGE GENERATION] [Paper][Code]
✅ [Image-to-image translation using conditional adversarial nets] [Paper][Code][Code]
✅ [Learning to Discover Cross-Domain Relations with Generative Adversarial Networks] [Paper][Code]
✅ [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks] [Paper][Code]
✅ [Unsupervised Image-to-Image Translation with Generative Adversarial Networks] [Paper]
✅ [Unsupervised Image-to-Image Translation Networks] [Paper]
GAN Theory
✅ [Energy-based generative adversarial network] [Paper][Code](Lecun paper)
✅ [Improved Techniques for Training GANs] [Paper][Code](Goodfellow's paper)
✅ [Mode Regularized Generative Adversarial Networks] [Paper](Yoshua Bengio , ICLR 2017)
✅ [Improving Generative Adversarial Networks with Denoising Feature Matching] [Paper][Code](Yoshua Bengio , ICLR 2017)
✅ [Sampling Generative Networks] [Paper][Code]
✅ [Mode Regularized Generative Adversarial Networkss] [Paper]( Yoshua Bengio's paper)
✅ [How to train Gans] [Docu]
✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper](ICLR 2017)
✅ [Unrolled Generative Adversarial Networks] [Paper][Code](ICLR 2017)
✅ [Least Squares Generative Adversarial Networks] [Paper][Code]
✅ [Wasserstein GAN] [Paper][Code]
✅ [Improved Training of Wasserstein GANs] [Paper][Code](The improve of wgan)
✅ [Towards Principled Methods for Training Generative Adversarial Networks] [Paper]
3D
✅ [Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling] [Paper][Web][code](2016 NIPS)
MUSIC
✅ [MidiNet: A Convolutional Generative Adversarial Network for Symbolic-domain Music Generation using 1D and 2D Conditions] [Paper][HOMEPAGE]
Face Generative and Editing
✅ [Autoencoding beyond pixels using a learned similarity metric] [Paper][code]
✅ [Coupled Generative Adversarial Networks] [Paper][Caffe Code][Tensorflow Code](NIPS)
✅ [Invertible Conditional GANs for image editing] [Paper][Code]
✅ [Learning Residual Images for Face Attribute Manipulation] [Paper]
✅ [Neural Photo Editing with Introspective Adversarial Networks] [Paper][Code](ICLR 2017)
For discrete distributions
✅ [Maximum-Likelihood Augmented Discrete Generative Adversarial Networks] [Paper]
✅ [Boundary-Seeking Generative Adversarial Networks] [Paper]
✅ [GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution] [Paper]
Adversarial Examples
✅ [SafetyNet: Detecting and Rejecting Adversarial Examples Robustly] [Paper]
Project
✅ [cleverhans] [Code](A library for benchmarking vulnerability to adversarial examples)
✅ [reset-cppn-gan-tensorflow] [Code](Using Residual Generative Adversarial Networks and Variational Auto-encoder techniques to produce high resolution images)
✅ [HyperGAN] [Code](Open source GAN focused on scale and usability)
Blogs
Author | Address |
---|---|
inFERENCe | Adversarial network |
inFERENCe | InfoGan |
distill | Deconvolution and Image Generation |
yingzhenli | Gan theory |
OpenAI | Generative model |
Other
✅ [1] http://www.iangoodfellow.com/slides/2016-12-04-NIPS.pdf (NIPS Goodfellow Slides)[Chinese Trans][details]
✅ [2] [PDF](NIPS Lecun Slides)
生成对抗网络资源 Adversarial Nets Papers的更多相关文章
- 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...
- 生成对抗网络(Generative Adversarial Networks,GAN)初探
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...
- 生成对抗网络(Generative Adversarial Network)阅读笔记
笔记持续更新中,请大家耐心等待 首先需要大概了解什么是生成对抗网络,参考维基百科给出的定义(https://zh.wikipedia.org/wiki/生成对抗网络): 生成对抗网络(英语:Gener ...
- 生成对抗网络(Generative Adversarial Networks, GAN)
生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一. GAN 主要包括了两个部分,即 ...
- 生成对抗网络 Generative Adversarial Networks
转自:https://zhuanlan.zhihu.com/p/26499443 生成对抗网络GAN是由蒙特利尔大学Ian Goodfellow教授和他的学生在2014年提出的机器学习架构. 要全面理 ...
- Generative Adversarial Nets[content]
0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...
- Generative Adversarial Nets[CycleGAN]
本文来自<Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks>,时间线为2017 ...
- Generative Adversarial Nets[CAAE]
本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...
- Generative Adversarial Nets[Wasserstein GAN]
本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...
随机推荐
- [ git ] eclipse如何与git 配合工作。
原文链接http://blog.csdn.NET/yangzhihello/article/details/11003941 呵呵,看看这个吧.先去安装eclipse.然后在现在 egit,应该可以从 ...
- RedHat系统文本界面安装图形界面方法
版本: Linux version 2.6.32-431.el6.x86_64 (mockbuild@x86-023.build.eng.bos.redhat.com) (gcc version 4. ...
- MFC ATL STL概要
MFC-----应用程序框架 ATL-----写COM的利器 STL-----用来写逻辑部分 MFC: MFC的目标是桌面应用,当然也有网络部分但很不充分.MFC是一套APP ...
- 安装mysql数据库要注意的
只安装基本功能即可,以后要的话可以加 需要配置环境变量 最好不要将数据存放在c盘,默认在 C:\ProgramData\MySQL\MySQL Server 5.6 里面存放建的表和存放的数据
- gunicorn+nginx配置方法
对于gunicorn+nginx的配置,理解他们之间的关系很重要,以及最后如何确认配置结果是正确的也很重要 nginx 配置文件: 修改这个配置文件有3个用处: 假设服务器本身的Ip是A称为ip-A, ...
- laravel 使用PhantomMagick导出pdf ,在Linux下安装字体
git项目地址:https://github.com/anam-hossain/phantommagick sudo apt-get -y install fontconfig xfonts-util ...
- Android - Android 面试题集 -- Android 部分答案
2.1 Activity1.Activity是什么?Activity是Android的四大组件之一.是用户操作的可视化界面:它为用户提供了一个完成操作指令的窗口.当我们创建完毕Activity之后,需 ...
- 【Qt开发】Qt Creator在Windows上的调试器安装与配置
Qt Creator在Windows上的调试器安装与配置 如果安装Qt时使用的是Visual Studio的预编译版,那么很有可能就会缺少调试器(Debugger),而使用MSVC的Qt对应的原生调试 ...
- Mailx安装与使用
1.卸载sendmail与postfix yum -y install mailx 2.安装mailx yum -y remove sendmail postfix 3.配置mail.rc vim / ...
- 第四周预习作业and第五周作业
第四周预习作业 统计一行文本的单词个数 本题目要求编写程序统计一行字符中单词的个数.所谓"单词"是指连续不含空格的字符串,各单词之间用空格分隔,空格数可以是多个. 输入格式: 输入 ...