题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=6589

题解连接:

https://www.cnblogs.com/xusirui/p/11229450.html

https://www.cnblogs.com/FST-stay-night/p/11227505.html

NTT来自:

https://www.cnblogs.com/Sakits/p/8416918.html

题解1说,要先暴力模拟看看规律。

一个很明显的直觉是可以看看最终的序列由哪些a[i]贡献而成。但是我连暴力都不会写啊。

还不如手推:

当x为1时:

观察求前缀和的过程

0次: a[0], a[1], a[2], a[3]

1次: a[0], a[1]+a[0], a[2]+a[1]+a[0], a[3]+a[2]+a[1]+a[0]

2次: a[0], a[1]+2a[0], a[2]+2a[1]+3a[0], a[3]+2a[2]+3a[1]+4a[0]

3次: a[0], a[1]+3a[0], a[2]+3a[1]+6a[0], a[3]+3a[2]+6a[1]+10a[0]

4次: a[0], a[1]+4a[0], a[2]+4a[1]+10a[0], a[3]+4a[2]+10a[1]+20a[0]

每一项前面的系数看起来有什么规律?

0次的时候就跳过吧……

1次的时候,各个都是1?其实是 C(i,0) 。

2次的时候,是从1开始递增的。其实是 C(i+1,1) 。

3次的时候,第i项的系数看起来像 C(i+2,2) 。

4次的时候,第i项的系数看起来像 C(i+3,3) 。

所以第m次时候,系数应该是c[i]=C(m-1+i,m-1)。

m次: c[0]a[0], c[0]a[1]+c[1]a[0], c[0]a[2]+c[1]a[1]+c[2]a[0], c[0]a[3]+c[1]a[2]+c[2]a[1]+c[3]a[0]

那么其实就是数组:

a[0],a[1],a[2],a[3],a[4]...

c[0],c[1],c[2],c[3],c[4]...

做卷积的结果。

所以就预处理组合数一波,然后直接NTT。

然后其实x=2和x=3是对几个数组分开求这个前缀和。

标程给出一个更方便的做法。直接跳着赋值,例如在x=2的时候,赋值c'[0]=c[0],c'[1]=0,c'[2]=c[1],c'[3]=0,c'[4]=c[2],c'[5]=0

那么直接卷积就是:

m次: c[0]a[0], c[0]a[1], c[0]a[2]+c[1]a[0], c[0]a[3]+c[1]a[1], c[0]a[4]+c[1]a[2]+c[2]a[0]

从标程瞎改的快一倍的AC代码。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll; const int MAXN = 2e6, mod = 998244353; inline int pow_mod(ll x, int n) {
ll res;
for(res = 1; n; n >>= 1, x = x * x % mod)
if(n & 1)
res = res * x % mod;
return res;
} inline int add_mod(int x, int y) {
x += y;
return x >= mod ? x - mod : x;
} inline int sub_mod(int x, int y) {
x -= y;
return x < 0 ? x + mod : x;
} void NTT(int a[], int n, int op) {
for(int i = 1, j = n >> 1; i < n - 1; ++i) {
if(i < j)
swap(a[i], a[j]);
int k = n >> 1;
while(k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
for(int len = 2; len <= n; len <<= 1) {
int g = pow_mod(3, (mod - 1) / len);
for(int i = 0; i < n; i += len) {
int w = 1;
for(int j = i; j < i + (len >> 1); ++j) {
int u = a[j], t = 1ll * a[j + (len >> 1)] * w % mod;
a[j] = add_mod(u, t), a[j + (len >> 1)] = sub_mod(u, t);
w = 1ll * w * g % mod;
}
}
}
if(op == -1) {
reverse(a + 1, a + n);
int inv = pow_mod(n, mod - 2);
for(int i = 0; i < n; ++i)
a[i] = 1ll * a[i] * inv % mod;
}
} int A[MAXN + 5], B[MAXN + 5];
int Asize, Bsize; int pow2(int x) {
int res = 1;
while(res < x)
res <<= 1;
return res;
} void convolution(int A[], int B[], int Asize, int Bsize) {
int n = pow2(Asize + Bsize - 1);
for(int i = Asize; i < n; ++i)
A[i] = 0;
for(int i = Bsize; i < n; ++i)
B[i] = 0;
NTT(A, n, 1);
NTT(B, n, 1);
for(int i = 0; i < n; ++i)
A[i] = 1ll * A[i] * B[i] % mod;
NTT(A, n, -1);
return;
} const int MAXM = 2e6; int fact[MAXM + 5], ifact[MAXM + 5]; int C(int n, int m) {
return m <= n ? (ll)fact[n] * ifact[m] % mod * ifact[n - m] % mod : 0;
} void init_C() {
fact[0] = 1;
for(int i = 1; i <= MAXM; ++i)
fact[i] = 1ll * fact[i - 1] * i % mod;
ifact[MAXM] = pow_mod(fact[MAXM], mod - 2);
for(int i = MAXM - 1; i >= 0; --i)
ifact[i] = 1ll * ifact[i + 1] * (i + 1) % mod;
} int main() {
#ifdef Yinku
freopen("Yinku.in", "r", stdin);
#endif // Yinku
init_C();
int T;
scanf("%d", &T);
while(T--) {
int n, m;
scanf("%d%d", &n, &m);
for(int i = 0; i < n; ++i) {
scanf("%d", &A[i]);
}
int cnt[] = {0, 0, 0, 0};
for(int i = 1; i <= m; ++i) {
int x;
scanf("%d", &x);
cnt[x]++;
}
for(int c = 1; c <= 3; ++c) {
if(cnt[c]) {
memset(B, 0, sizeof(B[0])*n);
for(int i = 0; i * c < n; ++i) {
B[i * c] = C(cnt[c] - 1 + i, i);
}
convolution(A, B, n, n);
}
}
ll ans = 0;
for(int i = 0; i < n; ++i)
ans ^= 1ll * (i + 1) * A[i];
printf("%lld\n", ans);
}
return 0;
}

2019 Multi-University Training Contest 1 - 1012 - NTT的更多相关文章

  1. 2016 Multi-University Training Contest 5 1012 World is Exploding 树状数组+离线化

    http://acm.hdu.edu.cn/showproblem.php?pid=5792 1012 World is Exploding 题意:选四个数,满足a<b and A[a]< ...

  2. HDU 5775 Bubble Sort(线段树)(2016 Multi-University Training Contest 4 1012)

    原址地址:http://ibupu.link/?id=31 Problem Description P is a permutation of the integers from 1 to N(ind ...

  3. HDU 6373.Pinball -简单的计算几何+物理受力分析 (2018 Multi-University Training Contest 6 1012)

    6373.Pinball 物理受力分析题目. 画的有点丑,通过受力分析,先求出θ角,为arctan(b/a),就是atan(b/a),然后将重力加速度分解为垂直斜面的和平行斜面的,垂直斜面的记为a1, ...

  4. HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)

    6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...

  5. HDU 6330.Problem L. Visual Cube-模拟到上天-输出立方体 (2018 Multi-University Training Contest 3 1012)

    6330.Problem L. Visual Cube 这个题就是输出立方体.当时写完怎么都不过,后来输出b<c的情况,发现这里写挫了,判断失误.加了点东西就过了,mdzz... 代码: //1 ...

  6. 2019 Nowcoder Multi-University Training Contest 4 E Explorer

    线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...

  7. 2019 Nowcoder Multi-University Training Contest 1 H-XOR

    由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...

  8. HDU 6762 Mow (2020 Multi-University Training Contest 1 1012) 半平面交

    Mow 题目链接 分析 将多边形的边向内部缩 r 个单位长度,然后这些边所围成的内部区域,就是圆心的合法范围,该范围也是一个多边形,假设面积是\(a\),周长是\(b\),那么可以知道圆可以覆盖的面积 ...

  9. HDU校赛 | 2019 Multi-University Training Contest 1

    2019 Multi-University Training Contest 1 http://acm.hdu.edu.cn/contests/contest_show.php?cid=848 100 ...

随机推荐

  1. MVC项目集成swagger

    1.创建WebAPI项目解决方案 2.使用nuget引入Swashbuckle包 引入Swashbuckle包后App_Start文件夹下会多出一个SwaggerConfig文件 3.添加接口注释 项 ...

  2. linux详解 rsync 服务和配置文件

    首先要选择服务器启动方式: l      对于负荷较重的 rsync 服务器应该选择独立运行方式 l      对于负荷较轻的 rsync 服务器应该选择 xinetd 运行方式 l      创建配 ...

  3. linux下挂载U盘方法

    1.使用 cat /proc/partitions 查看系统现在有哪些分区:[root@localhost ~]# cat /proc/partitions major minor  #blocks  ...

  4. 03.LinuxCentOS系统root目录LVM磁盘扩容

    根目录LVM扩容操作步骤: [root@centos7 ~]# df -lh文件系统 容量 已用 可用 已用% 挂载点/dev/mapper/centos-root 50G 7.7G 43G 6% / ...

  5. DispatcherServlet的工作原理

    下面是DispatcherServlet的工作原理图,图片来源于网络. 下面是我从DispatcherServlet源码层面来分析其工作流程: 1.请求到达后,调用HandlerMapping来查找对 ...

  6. LOJ6300 BZOJ5283 [CodePlus 2018 3 月赛]博弈论与概率统计

    一道好题!很久以前就想做了,咕到了现在,讲第二遍了才做. 首先我们观察到$p$是没有用的 因为赢的次数一定 那么每一种合法序列出现的概率均为$p^n*(1-p)^m$ 是均等的 我们可以不看它了 然后 ...

  7. pycharm的一个bug,pycharm 在debug时,会运行项目下的所有文件,而不是当前文件

    pycharm的一个bug,pycharm 在debug时,会运行项目下的所有文件,而不是当前文件

  8. Change the environment variable for python code running

    python程序运行中改变环境变量: Trying to change the way the loader works for a running Python is very tricky; pr ...

  9. php str_word_count()函数 语法

    php str_word_count()函数 语法 作用:计算字符串中的单词数.大理石平规格 语法:str_word_count(string,return,char) 参数: 参数 描述 strin ...

  10. gawk进阶

    一.使用变量 gawk支持两种不同类型的变量: 内建变量 自定义变量 1.1 内建变量 ①字段和记录分隔符变量 FIELDWIDTHS:有空格分割的一列数字,定义了每个数据字段确切宽度 FS:输入字段 ...