题目描述

小$w$来到天堂的门口,对着天堂的大门发呆。
大门上有一个二分图,左边第$i$个点连到右边第$p_i$个点。(保证$p_i$是一个排列)。
小$w$每次可以找左边某个对应连线尚未被移除的点$i$,付出$c_i$的代价之后删除左边第$i$个点到右边第$p_i$个点的连线,以及所有和它们相交的连线。
请问小$w$最少要花多少钱来删除所有连线?


输入格式

一行一个整数$n$表示两边点的个数。
一行$n$个整数表示$p_i$。
一行$n$个整数表示$c_i$。


输出格式

一行一个整数表示答案。


样例

样例输入:

5
3 1 4 5 2
3 4 3 4 1

样例输出:

5


数据范围与提示

对于$20\%$的数据,$n\leqslant 10$。
对于$40\%$的数据,$n\leqslant 1,000$。
对于另外$20\%$的数据,$|i-p_i|\leqslant 5$。
对于$100\%$的数据,$n\leqslant 2\times {10}^5,c_i\leqslant 10,000$。


题解

认真思考一下问题,其实我们就是要求一个极长上升序列。

设$dp[i]$表示左边最后一个选的谁的最大贡献。

每次转移的时候枚举一个前面既不相交,又能保证极长的$j$转移。

然而这样做的时间复杂度显然是$\Theta(n^2)$的。

因为$j$满足单调性,其一定是一个上升序列,那么我们可以用线段树来维护这个上升序列。

时间复杂度:$\Theta(n\log^2n)$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

#include<bits/stdc++.h>
#define L(x) x<<1
#define R(x) x<<1|1
using namespace std;
int n;
int p[200001],c[200001];
int trmax[1000000],trmin[1000000];
int res,dp[200001];
void askmax(int x,int l,int r,int L,int R)
{
if(r<L||R<l)return;
if(L<=l&&r<=R)
{
res=max(res,trmax[x]);
return;
}
int mid=(l+r)>>1;
askmax(L(x),l,mid,L,R);
askmax(R(x),mid+1,r,L,R);
}
int ask(int x,int l,int r,int w)
{
if(w>trmax[x])return 1<<30;
if(l==r)return dp[trmax[x]];
int mid=(l+r)>>1;
if(w>trmax[R(x)])return ask(L(x),l,mid,w);
return min(trmin[x],ask(R(x),mid+1,r,w));
}
void pushup(int x,int l,int r)
{
trmax[x]=max(trmax[L(x)],trmax[R(x)]);
int mid=(l+r)>>1;
if(trmax[R(x)]==-1044266559)trmin[x]=ask(L(x),l,mid,0);
else trmin[x]=ask(L(x),l,mid,trmax[R(x)]);
}
void change(int x,int l,int r,int d,int w)
{
if(l==r)
{
trmax[x]=w;
return;
}
int mid=(l+r)>>1;
if(d<=mid)change(L(x),l,mid,d,w);
else change(R(x),mid+1,r,d,w);
pushup(x,l,r);
}
int askmin(int x,int l,int r,int R)
{
if(R<l)return 1<<30;
if(r<=R)
{
if(r+1<=R)
{
res=-1;
askmax(1,1,n,r+1,R);
return ask(x,l,r,res);
}
return ask(x,l,r,0);
}
int mid=(l+r)>>1;
return min(askmin(L(x),l,mid,R),askmin(R(x),mid+1,r,R));
}
int main()
{
memset(trmax,-0x3f,sizeof(trmax));
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&p[i]);
for(int i=1;i<=n;i++)
scanf("%d",&c[i]);
change(1,0,n,0,0);
for(int i=1;i<=n;i++)
{
dp[i]=askmin(1,0,n,p[i])+c[i];
change(1,0,n,p[i],i);
}
cout<<askmin(1,0,n,n);
return 0;
}

rp++

[CSP-S模拟测试]:God Knows(线段树维护单调栈)的更多相关文章

  1. [CSP-S模拟测试]:陶陶摘苹果(线段树维护单调栈)

    题目传送门(内部题116) 输入格式 第一行两个整数$n,m$,如题 第二行有$n$个整数表示$h_1-h_n(1\leqslant h_i\leqslant 10^9)$ 接下来有$m$行,每行两个 ...

  2. [CSP-S模拟测试]:椎(线段树维护区间最值和单调栈)

    题目描述 虽不能至,心向往之. $Treap=Tree+Heap$ 椎$=$树$+$堆 小$\pi$学习了计算机科学中的数据结构$Treap$. 小$\pi$知道$Treap$指的是一种树. 小$\p ...

  3. 洛谷 P4198 楼房重建 线段树维护单调栈

    P4198 楼房重建 题目链接 https://www.luogu.org/problemnew/show/P4198 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上 ...

  4. [BZOJ 2957]楼房重建(THU2013集训)(线段树维护单调栈)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2957 分析: 根据题意,就是比较斜率大小 只看一段区间的话,那么这段区间能看见的楼房数量就是这 ...

  5. 【洛谷5294】[HNOI2019] 序列(主席树维护单调栈+二分)

    点此看题面 大致题意: 给你一个长度为\(n\)的序列\(A\),每次询问修改一个元素(只对当前询问有效),然后让你找到一个不下降序列\(B\),使得这两个序列相应位置之差的平方和最小,并输出这个最小 ...

  6. [CSP-S模拟测试]:Weed(线段树)

    题目描述 $duyege$的电脑上面已经长草了,经过辨认上面有金坷垃的痕迹.为了查出真相,$duyege$准备修好电脑之后再进行一次金坷垃的模拟实验.电脑上面有若干层金坷垃,每次只能在上面撒上一层高度 ...

  7. [CSP-S模拟测试]:string(线段树)

    题目描述 给定一个由小写字母组成的字符串$s$. 有$m$次操作,每次操作给定$3$个参数$l,r,x$. 如果$x=1$,将$s[l]~s[r]$升序排序: 如果$x=0$,将$s[l]~s[r]$ ...

  8. Contest Hunter 模拟赛09 A [线段树维护斜率]

    题面 传送门 思路 首先看看我们到底要干什么:有$1e6$次询问,遍历$i$,每次要求一个形如$b_i \ast a_j - a_i \ast b_j$的东西的最大值 考虑如果一个$j$的决策在当前的 ...

  9. Wannafly挑战赛18 E 极差(线段树、单调栈)

    Wannafly挑战赛18 E 极差 题意 给出三个长度为n的正整数序列,一个区间[L,R]的价值定义为:三个序列中,这个区间的极差(最大值与最小值之差)的乘积. 求所有区间的价值之和.答案对\(2^ ...

随机推荐

  1. upc组队赛16 Winner Winner【位运算】

    Winner Winner 题目链接 题目描述 The FZU Code Carnival is a programming competetion hosted by the ACM-ICPC Tr ...

  2. selenium python 报错“ unable to find binary in default location”

    selenium python 报错如下: raise exception_class(message, screen, stacktrace)selenium.common.exceptions.W ...

  3. HTML5--sessionStorage、localStorage、manifest

    sessionStroage: <!DOCTYPE html> <html lang="en"> <head> <meta charset ...

  4. Ubuntu 18.04安装docker 以及Nginx服务设置

    1.安装需要的包sudo apt install apt-transport-https ca-certificates software-properties-common curl 2.添加 GP ...

  5. daily plan -- 2019/5/20

    1.课内作业:物联网工程导论论文. 2.实验项目计划:学习Kinect彩色帧读取. 3.算法:LeetCode 动态规划一题. 4.英语:听力30分钟训练,英语单词. 今日心情: 进度反馈:计划基本完 ...

  6. kmp(最长前缀与后缀)

    http://acm.hdu.edu.cn/showproblem.php?pid=1358 Period Problem Description For each prefix of a given ...

  7. luogu P3657 (NOIP2017) 跳房子(二分+DP+单调队列)

    题面 传送门 分析 显然答案有单调性,可以二分答案,设当前二分值为g,根据题意我们可以求出跳跃长度的范围[l,r] 考虑DP 子状态: dp[i]表示跳到第i个点时的最大和 状态转移方程 \(dp[i ...

  8. opencv2——图像上的算术运算4

    1.图像算术运算 参数含义: src1:第一张图像 src2:第二张图像 dst:destination,目标图像,需要提前分配空间,可省略 mask:掩膜 scale:缩放比,常量 dtype:数据 ...

  9. ecshop 广告调用的几种方式

    1,ECSHOP后台设置广告更换 前台调用 {insert name='ads' id=2 num=1} id值表达广告位置的id.num表示数量 2,在代码加函数 function getads($ ...

  10. 【转】通俗理解Java序列化与反序列化

    一.序列化和反序列化的概念 把对象转换为字节序列的过程称为对象的序列化. 把字节序列恢复为对象的过程称为对象的反序列化. 对象的序列化主要有两种用途: 1) 把对象的字节序列永久地保存到硬盘上,通常存 ...