1.bitmap位图

1.1 bitmap位图的概念

首先来看一个例子,字符串big,

字母b的ASCII码为98,转换成二进制为 01100010
字母i的ASCII码为105,转换成二进制为 01101001
字母g的ASCII码为103,转换成二进制为 01100111

如果在Redis中,设置一个key,其值为big,此时可以get到big这个值,也可以获取到 big的ASCII码每一个位对应的值,也就是0或1

例如:

127.0.0.1:6379> set hello big
OK
127.0.0.1:6379> getbit hello 0 # b的二进制形式的第1位,即为0
(integer) 0
127.0.0.1:6379> getbit hello 1 # b的二进制形式的第2位,即为1
(integer) 1

big长度为3个字节,对应的长度为24位,使用getbit命令可以获取到big对应的位的对应的值

所以Redis是可以直接对位进行操作的

1.2 bitmap的常用命令

1.2.1 setbit命令

setbit key offset vlaue			给位图指定索引设置值

例子:

127.0.0.1:6379> set hello big       # 设置键值对,key为'hello',value为'big'
OK
127.0.0.1:6379> setbit hello 7 1 # 把hello二进制形式的第8位设置为1,之前的ASCII码为98,现在改为99,即把b改为c
(integer) 0 # 返回的是之前这个位上的值
127.0.0.1:6379> get hello # 修改之后,获取'hello'的值,为'cig'
"cig"

上面big的长度只有24位,如果使用setbit命令时,指定的位大于目标的长度时

127.0.0.1:6379> setbit hello 50 1
(integer) 0
127.0.0.1:6379> get hello
"cig\x00\x00\x00 "

从第25开始到第49位,中间用0来填充,第50位才会被设置为1

1.2.2 getbit命令

getbit key offset			获取位图指定索引的值

例子:

127.0.0.1:6379> getbit hello 25
(integer) 0
127.0.0.1:6379> getbit hello 49
(integer) 0
127.0.0.1:6379> getbit hello 50
(integer) 1

1.2.3 bitcount命令

bitcount key [start end]		获取位图指定范围(start到end,单位为字节,如果不指定就是获取全部)位值为1的个数

例子:

127.0.0.1:6379> bitcount hello
(integer) 14
127.0.0.1:6379> bitcount hello 0 23
(integer) 14

1.2.4 bitop命令

bitop op dtstkey key [key...]		做多个bitmap的and(交集),or(并集),not(非),xor(异或)操作并将结果保存在destkey中
bitpos key targetBit [start] [end] 计算位图指定范围(start到end,单位为字节,如果不指定就是获取全部)第一个偏移量对应的值等于targetBit的位置

1.3 bitmap位图应用

如果一个网站有1亿用户,假如user_id用的是整型,长度为32位,每天有5千万独立用户访问,如何判断是哪5千万用户访问了网站

1.3.1 方式一:用set来保存

使用set来保存数据运行一天需要占用的内存为

32bit * 50000000 = (4 * 50000000) / 1024 /1024 MB,约为200MB

运行一个月需要占用的内存为6G,运行一年占用的内存为72G

30 * 200 = 6G

1.3.2 方式二:使用bitmap的方式

如果user_id访问网站,则在user_id的索引上设置为1,没有访问网站的user_id,其索引设置为0,此种方式运行一天占用的内存为

1 * 100000000 = 100000000 / 1014 /1024/ 8MB,约为12.5MB

运行一个月占用的内存为375MB,一年占用的内存容量为4.5G

由此可见,使用bitmap可以节省大量的内存资源

1.4 bitmap使用经验

bitmap是string类型,单个值最大可以使用的内存容量为512MB
setbit时是设置每个value的偏移量,可以有较大耗时
bitmap不是绝对好,用在合适的场景最好

2.HyperLoglog

2.1 HyperLoglog简介

基于HyperLogLog算法,极小空间完成独立数量统计

维基百科地址

2.2 常用命令

pfadd key element [element...]					向hyperloglog添加元素
pfcount key [key...] 计算hyperloglog的独立总数
prmerge destkey sourcekey [sourcekey...] 合并多个hyperloglog

例子:

127.0.0.1:6379> pfadd unique_ids1 'uuid_1' 'uuid_2' 'uuid_3' 'uuid_4'       # 向unique_ids1中添加4个元素
(integer) 1
127.0.0.1:6379> pfcount unique_ids1 # 查看unique_ids1中元素的个数
(integer) 4
127.0.0.1:6379> pfadd unique_ids1 'uuid_1' 'uuid_2' 'uuid_3' 'uuid_10' # 再次向unique_ids1中添加4个元素
(integer) 1
127.0.0.1:6379> pfcount unique_ids1 # 由于两次添加的value有重复,所以unique_ids1中只有5个元素
(integer) 5
127.0.0.1:6379> pfadd unique_ids2 'uuid_1' 'uuid_2' 'uuid_3' 'uuid_4' # 向unique_ids2中添加4个元素
(integer) 1
127.0.0.1:6379> pfcount unique_ids2 # 查看unique_ids2中元素的个数
(integer) 4
127.0.0.1:6379> pfadd unique_ids2 'uuid_4' 'uuid_5' 'uuid_6' 'uuid_7' # 再次向unique_ids2中添加4个元素
(integer) 1
127.0.0.1:6379> pfcount unique_ids2 # 再次查看unique_ids2中元素的个数,由于两次添加的元素中有一个重复,所以有7个元素
(integer) 7
127.0.0.1:6379> pfmerge unique_ids1 unique_ids2 # 合并unique_ids1和unique_ids2
OK
127.0.0.1:6379> pfcount unique_ids1 # unique_ids1和unique_ids2中有重复元素,所以合并后的hyperloglog中只有8个元素
(integer) 8

2.3 HyperLoglog内存消耗(百万独立用户)

例子:

127.0.0.1:6379> flushall            # 清空Redis中所有的key和value
OK
127.0.0.1:6379> info # 查看Redis占用的内存量
...省略
# Memory
used_memory:833528
used_memory_human:813.99K # 此时Redis中没有任何键值对,占用814k内存
used_memory_rss:5926912
used_memory_rss_human:5.65M
used_memory_peak:924056
used_memory_peak_human:902.40K
total_system_memory:1023938560
total_system_memory_human:976.50M
used_memory_lua:37888
used_memory_lua_human:37.00K
maxmemory:0
maxmemory_human:0B
maxmemory_policy:noeviction
mem_fragmentation_ratio:7.11
mem_allocator:jemalloc-3.6.0
...省略

运行如下python代码:

import redis
import time client = redis.StrictRedis(host='192.168.81.101',port=6379)
key = 'unique'
start_time = time.time() for i in range(1000000):
client.pfadd(key,i)

等待python代码运行完成,再次查看Redis占用的内存数

127.0.0.1:6379> info
...省略
# Memory
used_memory:849992
used_memory_human:830.07K
used_memory_rss:5939200
used_memory_rss_human:5.66M
used_memory_peak:924056
used_memory_peak_human:902.40K
total_system_memory:1023938560
total_system_memory_human:976.50M
used_memory_lua:37888
used_memory_lua_human:37.00K
maxmemory:0
maxmemory_human:0B
maxmemory_policy:noeviction
mem_fragmentation_ratio:6.99
mem_allocator:jemalloc-3.6.0
...省略

可以看到,使用hyperloglog向redis中存入100万条数据,需占用的内存为

830.07K - 813.99K约为16k

占用的内存很少。

当然天下没有免费的午餐,hyperloglog也有非常明显的局限性

首先,hyperloglog有一定的错误率,在使用hyperloglog进行数据统计的过程中,hyperloglog给出的数据不一定是对的
按照维基百科的说法,使用hyperloglog处理10亿条数据,占用1.5Kb内存时,错误率为2%
其次,没法从hyperloglog中取出单条数据,这很容易理解,使用16KB的内存保存100万条数据,此时还想把100万条数据取出来,显然是不可能的

2.4 HyperLoglog注意事项

使用hyperloglog进行数据统计时,需要考虑三个因素:

1.是否需要很少的内存去解决问题,
2.是否能容忍错误
3.是否需要单条数据

3.GEO

3.1 GEO简介

GEO即地址信息定位

可以用来存储经纬度,计算两地距离,范围计算等

如上图中,计算北京到天津两地之间的距离

3.2 GEO常用命令

3.2.1 geoadd命令

geoadd key longitude latitude member [longitude latitude member...]		增加地理位置信息

如上图是5个城市经纬度相关数据

127.0.0.1:6379> geoadd cities:locations 116.28 39.55 beijing                # 添加北京的经纬度
(integer) 1
127.0.0.1:6379> geoadd cities:locations 117.12 39.08 tianjin 114.29 38.02 shijiazhuang # 添加天津和石家庄的经纬度
(integer) 2
127.0.0.1:6379> geoadd cities:locations 118.01 39.38 tangshan 115.29 38.51 baoding # 添加唐山和保定的经纬度
(integer) 2

3.2.2 geppos命令

geopos key member [member...]		获取地理位置信息

例子:

127.0.0.1:6379> geopos cities:locations tianjin     # 获取天津的地址位置信息
1) 1) "117.12000042200088501"
2) "39.0800000535766543"

3.2.3 geodist命令

geodist key member1 member2 [unit]      获取两个地理位置的距离,unit:m(米),km(千米),mi(英里),ft(尺)

例子:

127.0.0.1:6379> geodist cities:locations tianjin beijing km
"89.2061"
127.0.0.1:6379> geodist cities:locations tianjin baoding km
"170.8360"

3.2.4 georadius命令和georadiusbymember命令

georedius key longitude latitude radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
georadiusbymember key member radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
获取指定位置范围内的地理位置信息集合
withcoord:返回结果中包含经纬度
withdist:返回结果中包含距离中心节点位置
withhash:返回结果中包含geohash
COUNT count:指定返回结果的数量
asc|desc:返回结果按照距离中心节点的距离做升序或者降序
store key:将返回结果的地理位置信息保存到指定键
storedist key:将返回结果距离中心节点的距离保存到指定键

例子:

127.0.0.1:6379> georadiusbymember cities:locations beijing 150 km   # 获取距离北京150km范围内的城市
1) "beijing"
2) "tianjin"
3) "tangshan"
4) "baoding"

3.3 GEO相关说明

Redis的GEO功能是从3.2版本添加
geo功能基于zset实现
geo没有删除命令

3.3.1 使用zrem命令来进行geo的删除操作

命令:

zrem key member

例子:

127.0.0.1:6379> georadiusbymember cities:locations beijing 150 km
1) "beijing"
2) "tianjin"
3) "tangshan"
4) "baoding"
127.0.0.1:6379> zrem cities:locations baoding
(integer) 1
127.0.0.1:6379> georadiusbymember cities:locations beijing 150 km
1) "beijing"
2) "tianjin"
3) "tangshan"

3.4 GEO的应用场景

微信摇一摇

高可用Redis(六):瑞士军刀之bitmap,HyperLoglog和GEO的更多相关文章

  1. 【转】高可用Redis(六):瑞士军刀之bitmap,HyperLoglog和GEO

    1.bitmap位图 1.1 bitmap位图的概念 首先来看一个例子,字符串big, 字母b的ASCII码为98,转换成二进制为 01100010 字母i的ASCII码为105,转换成二进制为 01 ...

  2. 如何搭建高可用redis架构?

    如何搭建高可用redis架构? 温国兵 架构师小秘圈 昨天 作者:温国兵,曾任职于酷狗音乐,现为三七互娱 DBA.目前主要关注领域:数据库自动化运维.高可用架构设计.数据库安全.海量数据解决方案.以及 ...

  3. centos下搭建高可用redis

    Linux下搭建高可用Redis缓存 Redis是一个高性能的key-value数据库,现时越来越多企业与应用使用Redis作为缓存服务器.楼主是一枚JAVA后端程序员,也算是半个运维工程师了.在Li ...

  4. 高可用Redis服务架构分析与搭建

    基于内存的Redis应该是目前各种web开发业务中最为常用的key-value数据库了,我们经常在业务中用其存储用户登陆态(Session存储),加速一些热数据的查询(相比较mysql而言,速度有数量 ...

  5. 使用Docker Compose部署基于Sentinel的高可用Redis集群

    使用Docker Compose部署基于Sentinel的高可用Redis集群 https://yq.aliyun.com/articles/57953 Docker系列之(五):使用Docker C ...

  6. 高可用Redis服务架构分析与搭建(单redis实例)

    原文地址:https://www.cnblogs.com/xuning/p/8464625.html 基于内存的Redis应该是目前各种web开发业务中最为常用的key-value数据库了,我们经常在 ...

  7. Redis从出门到高可用--Redis复制原理与优化

    Redis从出门到高可用–Redis复制原理与优化 单机有什么问题? 1.单机故障; 2.单机容量有瓶颈 3.单机有QPS瓶颈 主从复制:主机数据更新后根据配置和策略,自动同步到备机的master/s ...

  8. 高可用Redis(八):Redis主从复制

    1.Redis复制的原理和优化 1.1 Redis单机的问题 1.1.1 机器故障 在一台服务器上部署一个Redis节点,如果机器发生主板损坏,硬盘损坏等问题,不能在短时间修复完成,就不能处理Redi ...

  9. 高可用Redis(十三):Redis缓存的使用和设计

    1.缓存的受益和成本 1.1 受益 1.可以加速读写:Redis是基于内存的数据源,通过缓存加速数据读取速度 2.降低后端负载:后端服务器通过前端缓存降低负载,业务端使用Redis降低后端数据源的负载 ...

随机推荐

  1. jmeter 安装

    3.1 windows10环境下测试工具jmeter安装与配置 3.1.1下载安装java 浏览器中打开链接:http://down-www.7down.net/pcdown/soft/xiazai/ ...

  2. request+response+jsp+el+jstl

    response: 1.设置响应行的状态码: response.setStatus(int sc); 2.设置response缓冲区的编码:response.setCharacterEncoding( ...

  3. Java 获取指定日期范围内的每个月,每季度,每一年

    /**     *根据时间范围获得月份集     * @return     */    public static List<String> getRangeSet(String beg ...

  4. Java复习总结——String

    概览 String被声明为final,因此它不可被继承. public final class String implements java.io.Serializable, Comparable&l ...

  5. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

  6. dgraph实现基本操作

    dgraph实现基本操作 简单介绍 dgraph 是一个分布式图数据库 mutate 为一个突变, 一般认为添加数据或者是删除数据为一个突变 query 为一个查询 golang实现dgraph的基本 ...

  7. .NET常用开发框架汇总

    分布式缓存框架:Microsoft Velocity:微软自家分布式缓存服务框架.Memcahed:一套分布式的高速缓存系统,目前被许多网站使用以提升网站的访问速度.Redis:是一个高性能的KV数据 ...

  8. 移动开发day1_过渡_2d转换_3d立体

    今天是就业班开班的第一天,上完了一天的课,做点总结. 什么叫做移动web 专门在手机或者 平板电脑 浏览器网页 为什么要学习移动web 工资高 1. 人拥有的手机数 大于 电脑的个数 2. 微信 1. ...

  9. 使用原生 python 造轮子搭建博客

    这篇用来 记录一个 从零开始的 博客搭建,希望坚持下去,因为python 开发效率令人发指,所以会原生从零写 ORM ,Web 框架 前提是打好 异步 io 的基础, 使用异步,有一点要谨记,一旦开始 ...

  10. 半导体知识讲解:IC基础知识及制造工艺流程

    本文转载自微信公众号 - 中国半导体论坛  , 链接 https://mp.weixin.qq.com/s/VhCsVGyEDrgc2XJ0jxLvaA