一、小文件是如何产生的

1.动态分区插入数据,产生大量的小文件,从而导致map数量剧增。

2.reduce数量越多,小文件也越多(reduce的个数和输出文件是对应的)。

3.数据源本身就包含大量的小文件。

二、小文件问题的影响

1.从Hive的角度看,小文件会开很多map,一个map开一个JVM去执行,所以这些任务的初始化,启动,执行会浪费大量的资源,严重影响性能。

2.在HDFS中,每个小文件对象约占150byte,如果小文件过多会占用大量内存。这样NameNode内存容量严重制约了集群的扩展。

三、小文件问题的解决方案

从小文件产生的途经就可以从源头上控制小文件数量,方法如下:

1.使用Sequencefile作为表存储格式,不要用textfile,在一定程度上可以减少小文件。

2.减少reduce的数量(可以使用参数进行控制)。

3.少用动态分区,用时记得按distribute by分区。

四、对于已有的小文件,我们可以通过以下几种方案解决:

1.使用hadoop archive命令把小文件进行归档。

2.重建表,建表时减少reduce数量。

3.通过参数进行调节,设置map/reduce端的相关参数,如下:

设置map输入合并小文件的相关参数:

//每个Map最大输入大小(这个值决定了合并后文件的数量)

set mapred.max.split.size=256000000;

//一个节点上split的至少的大小(这个值决定了多个DataNode上的文件是否需要合并)

set mapred.min.split.size.per.node=100000000;

//一个交换机下split的至少的大小(这个值决定了多个交换机上的文件是否需要合并)

set mapred.min.split.size.per.rack=100000000;

//执行Map前进行小文件合并

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

设置map输出和reduce输出进行合并的相关参数:

//设置map端输出进行合并,默认为true

set hive.merge.mapfiles = true

//设置reduce端输出进行合并,默认为false

set hive.merge.mapredfiles = true

//设置合并文件的大小

set hive.merge.size.per.task = 256*1000*1000

//当输出文件的平均大小小于该值时,启动一个独立的MapReduce任务进行文件merge。

set hive.merge.smallfiles.avgsize=16000000

欢迎留言联系,上海尚学堂大数据培训李同学笔记原创,转载请先联系。

Hive如何处理小文件问题?的更多相关文章

  1. 合并hive/hdfs小文件

    磁盘: heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K) 文件系统: 文件系统不是一个扇区一个扇区的来读数据,太慢了,所以 ...

  2. Hadoop记录-hive merge小文件

    1. Map输入合并小文件对应参数:set mapred.max.split.size=256000000;  #每个Map最大输入大小set mapred.min.split.size.per.no ...

  3. hive 处理小文件,减少map数

    1.hive.merge.mapfiles,True时会合并map输出.2.hive.merge.mapredfiles,True时会合并reduce输出.3.hive.merge.size.per. ...

  4. hive优化之自己主动合并输出的小文件

    1.先在hive-site.xml中设置小文件的标准. <property> <name>hive.merge.smallfiles.avgsize</name> ...

  5. Spark:spark df插入hive表后小文件数量多,如何合并?

    在做spark开发过程中,时不时的就有可能遇到租户的hive库目录下的文件个数超出了最大限制问题. 一般情况下通过hive的参数设置: val conf = new SparkConf().setAp ...

  6. hive小文件合并设置参数

    Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量.但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小.而且这些 ...

  7. Hive merge(小文件合并)

    当Hive的输入由非常多个小文件组成时.假设不涉及文件合并的话.那么每一个小文件都会启动一个map task. 假设文件过小.以至于map任务启动和初始化的时间大于逻辑处理的时间,会造成资源浪费.甚至 ...

  8. spark sql/hive小文件问题

    针对hive on mapreduce 1:我们可以通过一些配置项来使Hive在执行结束后对结果文件进行合并: 参数详细内容可参考官网:https://cwiki.apache.org/conflue ...

  9. Hive小文件处理

    小文件是如何产生的: 动态分区插入数据的时候,会产生大量的小文件,从而导致map数量的暴增 数据源本身就包含有大量的小文件 reduce个数越多,生成的小文件也越多 小文件的危害: 从HIVE角度来看 ...

随机推荐

  1. 小米平板4 Plus获取Root超级权限的步骤

    小米平板4 Plus有么好方法开启Root权限?大家都清楚,Android机器有Root权限,一旦手机开启root相关权限,就可以实现更强大的功能,打比方大家部门的营销部门的同事,使用个别营销应用都需 ...

  2. python中hasattr()、getattr()、setattr()函数的使用

    1. hasattr(object, name) 判断object对象中是否存在name属性,当然对于python的对象而言,属性包含变量和方法:有则返回True,没有则返回False:需要注意的是n ...

  3. 键盘keyCode值

    参考地址: https://blog.csdn.net/qq_25835645/article/details/78788987

  4. 洛谷 P2678 & [NOIP2015提高组] 跳石头

    题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...

  5. Windows Internals 笔记——关联性

    1.默认情况下,Windows Vista在给线程分配处理器时,使用软关联.意思是如果其他因素都一样,系统将使线程在上一次运行的处理器上运行.让线程始终在同一个处理器上运行有助于重用仍在处理器高速缓存 ...

  6. ansible理解

    目录 inventory文件 patterns 模块 ansible配置文件 PlayBook使用 inventory文件 [cassandra:children] shcp-01 shcp-06 b ...

  7. 自定义Section

    转载 :http://www.cnblogs.com/gaobing/p/6047746.html <configSections> 元素必须是 configuration 元素的第一个子 ...

  8. Loda Button

    当从服务器获取数据时,这个简单的jQuery插件会动画按钮的图标.(单击上面的按钮进行演示 - 超时2秒模仿服务器负载). 按钮的标记很简单: HTML <a href="#" ...

  9. 将已经存在的异步请求callback转换为同步promise

    由于js是单线程执行,为防止阻塞,会有很多异步回调函数callback,嵌套层次多了,可读性就差了很多.随着社区的发展,出现了promise.我们来将一些常见的回调函数做修改,变成promise的链式 ...

  10. 简易promise的实现(二)

    code 上一章中我们遇到了两个问题 1.异步调用顺序的问题 2.then返回一个promise的问题 思考 如果控制异步回调的顺序? 因为异步操的时间作我们无法控制,但是我们只需要按顺序执行回调函数 ...