BZOJ 2169
$f_{ij}$ 表示加入 $i$ 条边, $j$ 个点的度数是奇数的方案数,然后暴力
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a),i##_end=(b);i<=i##_end;++i)
#define For(i,a,b) for(int i=(a),i##_end=(b);i<i##_end;++i)
#define per(i,a,b) for(int i=(b),i##_st=(a);i>=i##_st;--i)
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define dbg(x) cerr<<#x" = "<<x<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define Es(x,i) for(Edge *i=G[x];i;i=i->nxt)
typedef long long ll;
typedef pair<int,int> pii;
const int inf=~0u>>1,mod=10007;
inline int rd() {
int x,c,f=1;while(!isdigit(c=getchar()))f=c!='-';x=c-'0';
while(isdigit(c=getchar()))x=x*10+c-'0';return f?x:-x;
}
const int N=1011;
char d[N];
int f[N][N],inv[N];
inline int C(int i){return i<2?0:i*(i-1)/2%mod;}
int main(){
#ifdef flukehn
freopen("test.txt","r",stdin);
#endif
inv[1]=1;
For(i,2,N)inv[i]=(mod-mod/i)*inv[mod%i]%mod;
int n=rd(),m=rd(),K=rd();
rep(i,1,m){
d[rd()]^=1;
d[rd()]^=1;
}
int p=0;
rep(i,1,n)p+=d[i];
f[0][p]=1;
rep(i,1,K)rep(j,0,n){
f[i][j]=inv[i]*((ll)f[i-1][j]*j*(n-j)%mod+(ll)(j+2<=n?f[i-1][j+2]:0)*C(j+2)%mod+(ll)(j>=2?f[i-1][j-2]:0)*C(n-j+2)%mod-(i>=2?f[i-2][j]:0)*(C(n)-i+2)%mod)%mod;
}
int r=f[K][0];
if(r<0)r+=mod;
cout<<r<<endl;
}
BZOJ 2169的更多相关文章
- bzoj 2169 连边——去重的思想
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2169 如果之前都去好重了,可以看作这次连的边只会和上一次连的边重复. 可以认为从上上次的状态 ...
- bzoj 2169 连边 —— DP+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2169 就和这篇博客说的一样:https://blog.csdn.net/WerKeyTom_ ...
- [BZOJ 2169]连边
Description 有N个点(编号1到N)组成的无向图,已经为你连了M条边.请你再连K条边,使得所有的点的度数都是偶数.求有多少种连的方法.要求你连的K条边中不能有重边,但和已经连好的边可以重.不 ...
- BZOJ 2169 连边 DP
思路:DP 提交:\(1\)次(课上刚讲过) 题解: 如果不管重边的话,我们设\(f[i][j]\)表示连了\(i\)条边,\(j\)个点的度数是奇数的方案数,那么显然我们可以分三种状态转移: \(f ...
- [HNOI 2011]卡农
Description 题库链接 在集合 \(S=\{1,2,...,n\}\) 中选出 \(m\) 个子集,满足三点性质: 所有选出的 \(m\) 个子集都不能为空. 所有选出的 \(m\) 个子集 ...
- 容斥原理+补集转化+MinMax容斥
容斥原理的思想大家都应该挺熟悉的,然后补集转化其实就是容斥原理的一种应用. 一篇讲容斥的博文https://www.cnblogs.com/gzy-cjoier/p/9686787.html 当我们遇 ...
- BZOJ 2127: happiness [最小割]
2127: happiness Time Limit: 51 Sec Memory Limit: 259 MBSubmit: 1815 Solved: 878[Submit][Status][Di ...
- BZOJ 3275: Number
3275: Number Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 874 Solved: 371[Submit][Status][Discus ...
- BZOJ 2879: [Noi2012]美食节
2879: [Noi2012]美食节 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1834 Solved: 969[Submit][Status] ...
随机推荐
- Zabbix 添加端口监控链接
zabbix 添加端口监控 连接数: zabbix 配置 添加 监控项: 其他检测 方式也是 示例: zabbix 客户端配置文件添加: 编辑 zabbix_agentd.conf 添加 端口 ...
- sketch格式文件转换成psd
在做响应式页面的时间需要把px单位转换成rem才可以,但是sketch文件的格式不能随意转换成rem,最高只能到CSS rem 16px,不能满足我们的需求,因此需要一个工具来转换成psd格式文件,他 ...
- 浅入深出Vue:工具准备之WebStorm安装配置
浅入深出Vue之工具准备(一):WebStorm安装配置 工欲善其事必先利其器,让我们先做好准备工作吧 导航篇 WebStorm安装配置 所有工具的下载地址都可以在导航篇中找到,这里我们下载的是最新版 ...
- 利用request和re抓取猫眼电影排行
import requests import re import time def get_one_page(url): headers = { 'User-Agent': 'Mozilla/5.0 ...
- java8---lambda表达式
语法糖 lambda表达式允许你通过表达式来代替功能接口. lambda表达式就和方法一样,它提供了一个正常的参数列表和一个使用这些参数的主体(body,可以是一个表达式或一个代码块).Lambda表 ...
- 《利用Python进行数据分析·第2版》
<利用Python进行数据分析·第2版> 第 1 章 准备工作第 2 章 Python 语法基础,IPython 和 Jupyter第 3 章 Python 的数据结构.函数和文件第 4 ...
- linux常见故障处理
目录 一. 文件和目录类 1.1 File exist 文件已经存在 1.2 No such file or directory 没有这个文件或目录(这个东西不存在) 1.3 command not ...
- stderr和stdout详细解说
今天又查了一下fprintf,其中对第一个参数stderr特别感兴趣. int fprintf(FILE *stream,char *format,[argument]): 在此之前先区分一下:pri ...
- tomcat 网页管理tomcat
一.设置管理员账户密码 进入tomcat安装目录 ->进入conf目录->修改user.xml->加入下面内容 模板 <role rolename="manager- ...
- python的pandas库学习笔记
导入: import pandas as pd from pandas import Series,DataFrame 1.两个主要数据结构:Series和DataFrame (1)Series是一种 ...