Codechef April Challenge 2019 游记

Subtree Removal

题目大意:

一棵\(n(n\le10^5)\)个结点的有根树,每个结点有一个权值\(w_i(|w_i\le10^9|)\)。你可以进行若干次(包括\(0\)次)操作,每次你可以选择一个连通块,将其删去。若你的操作次数为\(k\),则总收益为剩下结点权值之和\(-X\cdot k\)。求最大总收益。

思路:

树形DP,\(f_x\)表示以\(x\)为根的子树的最大总收益。转移时\(f_x=w_x+\sum_{y\in{\rm children}_x}f_y\)。若\(f_x<-X\),则令\(f_x=-X\)。

时间复杂度\(\mathcal O(n)\)。

源代码见提交记录

Playing with Numbers

题目大意:

一棵\(n(n\le10^5)\)个结点的有根树,每个结点有一个权值\(v_i\)和一个额外的属性\(m_i\)。对于一个叶子结点\(l_i\),定义其答案为:

  • 对于从根节点到\(l_i\)的路径上的每个节点,选择一个非负整数,乘以节点的点权。
  • 对路径上所有节点按照上述方式算出来的值求和。
  • 叶子\(l_i\)的答案就是和对\(m_{l_i}\)取模的最大值。

求每个叶子节点的答案。

思路:

一个结论是,若干个数\(\{A_1,A_2,\ldots,A_k\}\)在模\(m\)意义下,能组合出的最大数为\(m-\gcd(A_1,A_2,\ldots,A_k,m)\)。

只需一次DFS求出\(l_i\)到根结点链上的\(\gcd\),然后套用上述结论即可。

时间复杂度\(\mathcal O(n\log v_i)\)。

源代码见提交记录

Kira Loves Palindromes

题目大意:

给定字符串\(S(|S|\le1000,S_i\in[\texttt{'a'},\texttt{'z'}])\),请求出有多少种方案可以从该字符串中选出两个不相交的非空子串(记为\(s_1\)和\(s_2\)),使得其串接\(s_1+s_2\)为回文串。

我们认为\((s_1,s_2)\)和\((s^′_1,s^′_2)\)是不同的两种方案,当且仅当\(s_1\)和\(s^′_1\)的位置不同,或者\(s_2\)和\(s^′_2\)的位置不同。

思路:

如图所示:

\(s_1=\texttt{'abc'},s_2=\texttt{'xyxcba'}\),其中\(\texttt{'abc'}\)和\(\texttt{'cba'}\)是对应的部分,而\(\texttt{'xyx'}\)是插入在中间的回文串。

枚举两个\(\texttt{'c'}\)的位置\(p\)和\(q\),二分出从\(p\)和\(q\)往两侧扩展出的最长距离\(len\),对于插入串\(S_{[l,r]}\),预处理出满足\(l=p+1\)且\(r<q-1\)或\(r=q-1\)且\(l>p+1\)的回文串个数\(cnt\)(注意这里不考虑\(l=p+1\)且\(r=q-1\)的情况,避免算重)。对于固定的\(p,q\),答案为\(len\times(cnt+1)\)(\(+1\)表示插入串为空)。最后将未统计的\(l=p+1\)且\(r=q-1\)的情况计入答案即可。

使用字符串哈希算法可以简单地实现。

时间复杂度\(\mathcal O(n^2\log n)\)。

源代码见提交记录

Offer for Chef

题目大意:

一个长度为\(n(n\le10^5)\)的数列\(A_{1\sim n}\),\(q(q\le10)\)次询问,每次给出数列\(t_{1\sim n}\)(\(t_i\)中只有不超过\(50\)个数不为\(0\))和一个整数\(k\),问将这个数列分为\(k\)段,定义每一段的价值为区间内每个元素\(A_i\cdot t_i\)之和。总收益为所有区间价值的按位与。最大化总收益。

思路:

原题链接CF981D

显然我们可以将\(A_i\cdot t_i=0\)的数去掉,记剩下数的个数为\(m\)。

从高到低枚举答案的每一个二进制位,判断是否可以为\(1\)。若可以,则在保留这一位的情况下处理下一位。判定某一位是否能为\(1\)可以用一个\(\mathcal O(m^3)\)的动态规划实现,这里不再赘述。

大约枚举\(60\)个二进制位,时间复杂度\(\mathcal O(60\cdot qm^3)\)。

源代码见提交记录

Mininum XOR over Tree

题目大意:

给定一棵\(n(n\le2\times10^5)\)的有根树,每个结点有权值\(w_i(1\le w_i<2^20)\)。\(q(q\le10^6)\)次询问,给定结点\(v\)和参数\(k(q\le k<2^20)\),求对于子树\(v\)中所有结点\(u\),\(w_u\oplus k\)的最大值,并输出使答案最大的编号最小的\(u\)。强制在线。

思路:

以DFS序为时间,建立可持久化01字典树。查询时就在子树对应的区间内查找能异或出的最大值。

考虑如何根据这个\(w_u\oplus k\)的最大值求出最小的\(u\)。

将所有结点以\(w_i\)为第一关键字,DFS序为第二关键字排序。维护区间内结点编号的最小值。询问时由于知道了\(w_u\),只须在对应权值、对应DFS序的区间内查找最大值即可。这可以用稀疏表方便地实现。

时间复杂度\(\mathcal O(n\log n+(n+q)\log w_i)\)。

实现上需要注意常数。

源代码见提交记录

Codechef April Challenge 2019 游记的更多相关文章

  1. CodeChef April Challenge 2019题解

    传送门 \(Maximum\ Remaining\) 对于两个数\(a,b\),如果\(a=b\)没贡献,所以不妨假设\(a<b\),有\(a\%b=a\),而\(b\%a<a\).综上, ...

  2. Codechef April Challenge 2019 Division 2

    Maximum Remaining 题意:给n个数,取出两个数$a_{i}$,$a_{j}$,求$a_{i}\% a_{j}$取模的最大值 直接排个序,第二大(严格的第二大)模第一大就是答案了. #i ...

  3. Codechef October Challenge 2018 游记

    Codechef October Challenge 2018 游记 CHSERVE - Chef and Serves 题目大意: 乒乓球比赛中,双方每累计得两分就会交换一次发球权. 不过,大厨和小 ...

  4. Codechef September Challenge 2018 游记

    Codechef September Challenge 2018 游记 Magician versus Chef 题目大意: 有一排\(n(n\le10^5)\)个格子,一开始硬币在第\(x\)个格 ...

  5. Codechef November Challenge 2019 Division 1

    Preface 这场CC好难的说,后面的都不会做QAQ 还因为不会三进制位运算卷积被曲明姐姐欺负了,我真是太菜了QAQ PS:最后还是狗上了六星的说,期待两(三)场之内可以上七星 Physical E ...

  6. Codechef October Challenge 2019 Division 1

    Preface 这次CC难度较上两场升高了许多,后面两题都只能借着曲明姐姐和jz姐姐的仙气来做 值得一提的是原来的F大概需要大力分类讨论,结果我写了一大半题目就因为原题被ban了233 最后勉强涨了近 ...

  7. Codechef September Challenge 2019 Division 2

    Preface 这确实应该是我打过的比较水的CC了(其实就打过两场) 但由于我太弱了打的都是Div2,所以会认为上一场更简单,其实上一场Div的数据结构是真的毒 好了废话不多说快速地讲一下 A Eas ...

  8. Codechef August Challenge 2019 Division 2

    Preface 老年菜鸡终于开始打CC了,由于他太弱了所以只能打Div2 因为台风的原因challenge并没有写,所以水了个Rank7 A Football SB模拟题不解释 #include< ...

  9. 【Code Chef】April Challenge 2019

    Subtree Removal 很显然不可能选择砍掉一对有祖先关系的子树.令$f_i$表示$i$子树的答案,如果$i$不被砍,那就是$a_i + \sum\limits_j f_j$:如果$i$被砍, ...

随机推荐

  1. Jupyter Notebook中的快捷键

    1.快捷键 Jupyter Notebook 有两种键盘输入模式.编辑模式,允许你往单元中键入代码或文本:这时的单元框线是绿色的.命令模式,键盘输入运行程序命令:这时的单元框线是灰色. 命令模式 (按 ...

  2. SQL server存储过程,触发器,游标相关实例

    use MySchool go alter proc P_stu as select AVG(StudentResult)as 平均分 from Result select * from Result ...

  3. MyBatis3

    一.连接数据库的配置单独放在一个properties文件中 之前,我们是直接将数据库的连接配置信息写在了MyBatis的conf.xml文件中,如下: <?xml version="1 ...

  4. LeetCode第十五题-找出数组中三数和为0的答案

    3Sum 问题简介: 给定n个整数的数组nums,是否有元素a,b,c在nums中,使a + b + c = 0? 找到数组中所有唯一的三元组,它们的总和为零 注:解决方案集不得包含重复的三元组 例如 ...

  5. Object类中方法详解

    目录 概述 hashCode方法 getClass方法 toString方法 equals方法 clone方法 finalize方法 概述 Object 是类层次结构的根类.每个类都使用 Object ...

  6. python把列表前几个元素提取到新列表

    需要添加几个就循环几次   list = ['a','b','c','d','e'] new_list = [] for i in range(3): print(list[i]) new_list. ...

  7. django+uwsgi+nginx的部署

    1.下载与项目对应的django版本pip3 install django==1.11.16 -i https://pypi.douban.com/simple/2.用django内置的wsgi模块测 ...

  8. Mybatis 常用注解

    Mybatis常用注解对应的目标和标签如表所示: 注解 目标 对应的XML标签 @CacheNamespace 类 <cache> @CacheNamespaceRef 类 <cac ...

  9. Gitlab_ansible_jenkins三剑客④jenkins安装图解及freestyle的简单使用

    java环境准备 # 安装jdk1.8 [root@node02 ~]# rpm -ivh jdk-8u181-linux-x64.rpm vim /etc/profile export JAVA_H ...

  10. C# 7.0特性

    一.out的形参变量无需再提前声明 befor: "; int numericResult; if (int.TryParse(input, out numericResult)) Cons ...