对于给定的训练数据集,朴素贝叶斯法首先基于iid假设学习输入/输出的联合分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。

一、目标


设输入空间是n维向量的集合,输出空间为类标记集合= {c1, c2, ..., ck}。X是定义在上的随机变量,Y是定义在上的随机变量。P(X, Y)是X和Y的联合概率分布。训练数据集 T = {(x1, y1), (x2, y2), ..., (xN, yN)}由P(X, Y)独立同分布产生。

朴素贝叶斯法的学习目标是习得联合概率分布P(X, Y),以此计算后验概率,从而将实例分到后验概率最大的类中。由于P(X, Y) = P(Y)P(X|Y),因此学习目标可以具体到先验概率分布P(Y = ck)和条件概率分布P(X = x|Y = ck)(k = 1, 2, ..., K)。

二、后验概率最大化的原理


最大化后验概率等价于最小化期望损失(expected loss),或者说条件风险(conditional risk)。设选择0-1损失函数

其中f(X)是分类决策函数,则期望损失为

由于期望是对联合分布P(X, Y)取的,因此上式可推出

贝叶斯判定准则(Bayes decision rule):最小化总体风险,只需在每个样本上选择那个能使条件风险最小的类别标记。于是

这样一来,根据期望风险最小化准则就得到后验概率从最大化准则:

另一方面,由条件独立性假设

与贝叶斯定理

得到

由于上式中分布对ck都是相同的,因此

三、参数估计:极大似然估计


先验概率P(Y = ck)的极大似然估计:

条件概率P(X(j) = ajl|Y = ck)的极大似然估计:

其中设第j个特征x(j)可能的取值集合为{aj1, aj2, ..., ajSj},I为指示函数。

四、算法伪码及实现


书中给中了算法的伪码

下面给出朴素贝叶斯算法的具体实现

『python』代码摘自https://www.cnblogs.com/yiyezhouming/p/7364688.html

#coding:utf-8
# 极大似然估计 朴素贝叶斯算法
import pandas as pd
import numpy as np class NaiveBayes(object):
def getTrainSet(self):
dataSet = pd.read_csv('C://pythonwork//practice_data//naivebayes_data.csv')
dataSetNP = np.array(dataSet) #将数据由dataframe类型转换为数组类型
trainData = dataSetNP[:,0:dataSetNP.shape[1]-1] #训练数据x1,x2
labels = dataSetNP[:,dataSetNP.shape[1]-1] #训练数据所对应的所属类型Y
return trainData, labels def classify(self, trainData, labels, features):
#求labels中每个label的先验概率
labels = list(labels) #转换为list类型
P_y = {} #存入label的概率
for label in labels:
P_y[label] = labels.count(label)/float(len(labels)) # p = count(y) / count(Y) #求label与feature同时发生的概率
P_xy = {}
for y in P_y.keys():
y_index = [i for i, label in enumerate(labels) if label == y] # labels中出现y值的所有数值的下标索引
for j in range(len(features)): # features[0] 在trainData[:,0]中出现的值的所有下标索引
x_index = [i for i, feature in enumerate(trainData[:,j]) if feature == features[j]]
xy_count = len(set(x_index) & set(y_index)) # set(x_index)&set(y_index)列出两个表相同的元素
pkey = str(features[j]) + '*' + str(y)
P_xy[pkey] = xy_count / float(len(labels)) #求条件概率
P = {}
for y in P_y.keys():
for x in features:
pkey = str(x) + '|' + str(y)
P[pkey] = P_xy[str(x)+'*'+str(y)] / float(P_y[y]) #P[X1/Y] = P[X1Y]/P[Y] #求[2,'S']所属类别
F = {} #[2,'S']属于各个类别的概率
for y in P_y:
F[y] = P_y[y]
for x in features:
F[y] = F[y]*P[str(x)+'|'+str(y)] #P[y/X] = P[X/y]*P[y]/P[X],分母相等,比较分子即可,所以有F=P[X/y]*P[y]=P[x1/Y]*P[x2/Y]*P[y] features_label = max(F, key=F.get) #概率最大值对应的类别
return features_label if __name__ == '__main__':
nb = NaiveBayes()
# 训练数据
trainData, labels = nb.getTrainSet()
# x1,x2
features = [2,'S']
# 该特征应属于哪一类
result = nb.classify(trainData, labels, features)
print features,'属于',result

朴素贝叶斯法(naive Bayes algorithm)的更多相关文章

  1. PGM:贝叶斯网表示之朴素贝叶斯模型naive Bayes

    http://blog.csdn.net/pipisorry/article/details/52469064 独立性质的利用 条件参数化和条件独立性假设被结合在一起,目的是对高维概率分布产生非常紧凑 ...

  2. 【机器学习速成宝典】模型篇05朴素贝叶斯【Naive Bayes】(Python版)

    目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布, ...

  3. 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)

    第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...

  4. 【Spark机器学习速成宝典】模型篇04朴素贝叶斯【Naive Bayes】(Python版)

    目录 朴素贝叶斯原理 朴素贝叶斯代码(Spark Python) 朴素贝叶斯原理 详见博文:http://www.cnblogs.com/itmorn/p/7905975.html 返回目录 朴素贝叶 ...

  5. 朴素贝叶斯(Naive Bayes)

    1.朴素贝叶斯模型 朴素贝叶斯分类器是一种有监督算法,并且是一种生成模型,简单易于实现,且效果也不错,需要注意,朴素贝叶斯是一种线性模型,他是是基于贝叶斯定理的算法,贝叶斯定理的形式如下: \[P(Y ...

  6. 朴素贝叶斯(naive bayes)算法及实现

    处女文献给我最喜欢的算法了 ⊙▽⊙ ---------------------------------------------------我是机智的分割线----------------------- ...

  7. 深入理解朴素贝叶斯(Naive Bayes)

    https://blog.csdn.net/li8zi8fa/article/details/76176597 朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.朴素贝叶斯原理简 ...

  8. 模式识别之贝叶斯---朴素贝叶斯(naive bayes)算法及实现

    处女文献给我最喜欢的算法了 ⊙▽⊙ ---------------------------------------------------我是机智的分割线----------------------- ...

  9. 【分类算法】朴素贝叶斯(Naive Bayes)

    0 - 算法 给定如下数据集 $$T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\},$$ 假设$X$有$J$维特征,且各维特征是独立分布的,$Y$有$K$种取值.则 ...

  10. 朴素贝叶斯分类器Naive Bayes

    优点Naive Bayes classifiers tend to perform especially well in one of the following situations: When t ...

随机推荐

  1. Windows驱动——读书笔记《Windows驱动开发技术详解》

    =================================版权声明================================= 版权声明:原创文章 谢绝转载  请通过右侧公告中的“联系邮 ...

  2. 游戏 & Github Page

    1. snakewizard.github.io 贪吃蛇小游戏 2. mattbasile.github.io 龙珠 DragonballZ-Battle 3. nathandhyou.github. ...

  3. Git入门(安装及基础命令行操作)

    一.安装 1.Mac 在Mac中安装Git的方法不止一种.最简单的要数通过Xcode命令行工具.对于Mavericks(10.9)或更高版本的操作系统,当你第一次尝试在终端执行git命令时,系统会自动 ...

  4. Spring Boot相关~

    Introducing Spring Boot Spring Boot makes it easy to create stand-alone, production-grade Spring-bas ...

  5. linux压缩、解压缩和归档工具

    linux基础之压缩.解压缩和归档工具 1.压缩工具 基本介绍 为了减少文件的原来的文件大小而过多的浪费磁盘的存储空间,我们使用压缩后多文件进行存储 压缩工具的介绍 compress:把文件压缩成以. ...

  6. 1945 : 卡贩子Carol

    题目描述 来自F星球的Carol是一个不折不扣的“正版游戏受害者”,在黑色星期五的疯狂购买后,钱包渐空的Carol突然发现TA所使用的游戏交易平台上有个值得留意的地方————集换式卡牌. 集换式卡牌是 ...

  7. opencv+qt+vtk,编程时报错'detail':ambiguous symbol

    解决办法: 把#include <vtkSmartPointer.h>放到所有头文件的最前面:

  8. 【模板】字符串匹配的三种做法(Hash、KMP、STL)

    题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 输入输出格式 输入格式: 第一行为一个字符串,即为s1 第二行为一个字符串,即为s2 输出格式: 1行 ...

  9. 加密算法HASH和MD5模块hsahlib

    HASH Hash,一般翻译做"散列",也有直接音译为"哈希"的,就是把任意长度的输入(又叫做预映射,pre-image),通过散列算法,变换成固定长度的输出, ...

  10. xamarin android 文件选择

    调出选择界面: Intent intent = new Intent(Intent.ActionGetContent); intent.AddCategory(Intent.CategoryOpena ...