The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes. 题意:找到l、r区间内,差值最大和最小的相邻质数。
思路:因为n很大,所以不可能直接找出所有的质数后遍历
对于区间1~n,我们只需要找出√n 范围内的素数,倍增标记剩余区间的合数,就可以得到区间的所有质数。
 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; const int maxn = 1e5;
int prime[maxn];
int tot;
void get_pri(int n)
{
bool v[n+];
memset(v,,sizeof(v));
for(int i=; i<=n; i++)
{
if(!v[i])
prime[++tot] = i;
for(int j=i; j<=n/i; j++)
{
v[j*i] = ;
}
}
}
int main()
{ int l,r;
while(~scanf("%d%d",&l,&r))
{
tot = ;
get_pri(sqrt(r));
bool vis[r-l+];
memset(vis,,sizeof(vis));
for(int i=; i<=tot; i++)
{
for(int j=ceil(l*1.0/prime[i]); j<=r/prime[i]; j++)
{
if(j == )continue;
vis[prime[i]*j-l] = ;
}
}
int ans[r-l+];
int cnt = ;
for(int i=; i<=r-l; i++)
{
if(!vis[i])
{
if(i+l == )continue;
ans[++cnt] = i+l;
}
}
if(cnt < )
printf("There are no adjacent primes.\n");
else
{
int minn = 0x3f3f3f3f;
int maxx = ;
int id1;
int id2;
for(int i=; i<cnt; i++)
{
int tmp = ans[i+]-ans[i];
if(tmp < minn)
{
minn = tmp;
id1 = i;
}
if(tmp > maxx)
{
maxx = tmp;
id2 = i;
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",ans[id1],ans[id1+],ans[id2],ans[id2+]);
}
}
}
												

Prime Distance POJ - 2689 (数学 素数)的更多相关文章

  1. Prime Distance POJ - 2689 线性筛

    一个数 $n$ 必有一个不超过 $\sqrt n$ 的质因子. 打表处理出 $1$ 到 $\sqrt n$ 的质因子后去筛掉属于 $L$ 到 $R$ 区间的素数即可. Code: #include&l ...

  2. [ACM] POJ 2689 Prime Distance (筛选范围大素数)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 D ...

  3. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  4. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  5. POJ2689:Prime Distance(大数区间素数筛)

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  6. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  7. poj 2689 巧妙地运用素数筛选

    称号: 给出一个区间[L,R]求在该区间内的素数最短,最长距离. (R < 2 * 10^9 , R - L <= 10 ^ 6) 由数论知识可得一个数的因子可在开根号内得到. 所以,我们 ...

  8. poj 2689 (素数二次筛选)

    Sample Input 2 17 14 17 Sample Output 2,3 are closest, 7,11 are most distant. There are no adjacent ...

  9. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

随机推荐

  1. react创建组件的几种方式及其区别

    react创建组件有如下几种方式 ①.函数式定义的无状态组件 ②.es5原生方式React.createClass定义的组件   ③.es6形式的extends React.Component定义的组 ...

  2. yii2 or查询

    // 我们要查询id等于1或者id等于3的数据 $userInfo = User::find()->where(['or' , 'id = 1' , 'id = 3'])->all(); ...

  3. POM文件分析记

    pom英文全称:project object model 1.简介 pom.xml文件描述了maven项目的基本信息,比如groupId,artifactId,version等.也可以对maven项目 ...

  4. 驱动调试(四)oops确定调用树

    目录 驱动调试(四)oops确定调用树 内核开启调用树 栈指针分析 原理 寄存器别名 基础解释 例子分析 找到PC地址的位置 栈分析 附录:原文的excel title: 驱动调试(四)oops确定调 ...

  5. 第四节:Task的启动的四种方式以及Task、TaskFactory的线程等待和线程延续的解决方案

    一. 背景 揭秘: 在前面的章节介绍过,Task出现之前,微软的多线程处理方式有:Thread→ThreadPool→委托的异步调用,虽然也可以基本业务需要的多线程场景,但它们在多个线程的等待处理方面 ...

  6. 页面加载过渡页 loading plugin css

    是前文 plugin 示例 loading 中需要用到的样式.现在样式扩充为 5类.loadtwo 使用到了bgimg /*loading animation loading one*/ /* loa ...

  7. 使用kqueue的str_cli函数

    void str_cli(FILE *fp, int sockfd) { , isfile; char buf[MAXLINE]; ]; struct timespec ts; struct stat ...

  8. 浏览器录宏重放软件-iMacros

    iMacros https://imacros.net/ iMacros v12 Now Available The world's most popular web automation, data ...

  9. 第28月第24天 requestSerializer

    1. requestSerializer关于 requestSerializer它就是AFNetworking参数编码的序列化器,它一共有三种编码格式: AFHTTPRequestSerializer ...

  10. Django之Cookie和Session

    http://www.cnblogs.com/liwenzhou/p/8343243.html 一.Cookie Cookie是什么? 就是保存在客户端浏览器上的键值对. Cookie为什么存在? 因 ...