The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes. 题意:找到l、r区间内,差值最大和最小的相邻质数。
思路:因为n很大,所以不可能直接找出所有的质数后遍历
对于区间1~n,我们只需要找出√n 范围内的素数,倍增标记剩余区间的合数,就可以得到区间的所有质数。
 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; const int maxn = 1e5;
int prime[maxn];
int tot;
void get_pri(int n)
{
bool v[n+];
memset(v,,sizeof(v));
for(int i=; i<=n; i++)
{
if(!v[i])
prime[++tot] = i;
for(int j=i; j<=n/i; j++)
{
v[j*i] = ;
}
}
}
int main()
{ int l,r;
while(~scanf("%d%d",&l,&r))
{
tot = ;
get_pri(sqrt(r));
bool vis[r-l+];
memset(vis,,sizeof(vis));
for(int i=; i<=tot; i++)
{
for(int j=ceil(l*1.0/prime[i]); j<=r/prime[i]; j++)
{
if(j == )continue;
vis[prime[i]*j-l] = ;
}
}
int ans[r-l+];
int cnt = ;
for(int i=; i<=r-l; i++)
{
if(!vis[i])
{
if(i+l == )continue;
ans[++cnt] = i+l;
}
}
if(cnt < )
printf("There are no adjacent primes.\n");
else
{
int minn = 0x3f3f3f3f;
int maxx = ;
int id1;
int id2;
for(int i=; i<cnt; i++)
{
int tmp = ans[i+]-ans[i];
if(tmp < minn)
{
minn = tmp;
id1 = i;
}
if(tmp > maxx)
{
maxx = tmp;
id2 = i;
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",ans[id1],ans[id1+],ans[id2],ans[id2+]);
}
}
}
												

Prime Distance POJ - 2689 (数学 素数)的更多相关文章

  1. Prime Distance POJ - 2689 线性筛

    一个数 $n$ 必有一个不超过 $\sqrt n$ 的质因子. 打表处理出 $1$ 到 $\sqrt n$ 的质因子后去筛掉属于 $L$ 到 $R$ 区间的素数即可. Code: #include&l ...

  2. [ACM] POJ 2689 Prime Distance (筛选范围大素数)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 D ...

  3. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  4. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  5. POJ2689:Prime Distance(大数区间素数筛)

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  6. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  7. poj 2689 巧妙地运用素数筛选

    称号: 给出一个区间[L,R]求在该区间内的素数最短,最长距离. (R < 2 * 10^9 , R - L <= 10 ^ 6) 由数论知识可得一个数的因子可在开根号内得到. 所以,我们 ...

  8. poj 2689 (素数二次筛选)

    Sample Input 2 17 14 17 Sample Output 2,3 are closest, 7,11 are most distant. There are no adjacent ...

  9. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

随机推荐

  1. CentOS7 Zabbix3.4安装

    依赖于lnmp或者lamp环境: 1.下载源码包 # wget -O zabbix-3.4.2.tar.gz http://sourceforge.net/projects/zabbix/files/ ...

  2. vmware(1):vmware中的bridge、nat、host-only的区别

    VMWare提供了三种工作模式,它们是bridged(桥接模式).NAT(网络地址转换模式)和host-only(主机模式) bridged(桥接模式) 在这种模式下,VMWare虚拟出来的操作系统就 ...

  3. ArcGis 属性表.dbf文件使用Excel打开中文乱码的解决方法

    2019年4月 拓展: ArcGis——好好的属性表,咋就乱码了呢? 2019年3月27日补充: 在ArcMap10.3+(根据官网描述应该是,作者测试使用10.5,可行)以后的版本,可以使用ArcT ...

  4. oracle数据库驱动(ojdbc)

    第1部分 Q:为什么oralce的jdbc驱动,在maven上搜索到把pom配置复制到pom.xml里进行引用的时候会报错? ANS:虽然能在maven仓库里搜索到,但貌似不能用,原因是oracle是 ...

  5. DUMP101 企业级电商FE

    需求拆分原则 1. 单个迭代不能太大 2. 需求可交付,功能闭环 3. 成本意识 二八法则 4.  预期价值体现 ……………………………………………………………………………… 做 [直接 git cl ...

  6. 迅为IMX6开发板真实产品案例分享-专为研发用芯选择

    迅为IMX6开发板: Android4.4系统 Linux + Qt5.7系统 Ubuntu12.04系统 部分真实案例:HMI:3D打印机:医疗设备:工控机:触控一体机:车载终端 核心板兼容:IMX ...

  7. 【vue】路由配置

    一般组件我们会有全屏组件,或是在页面的某个部分显示组件,所以路由的第一层一般是全屏显示的,而在/目录下的组件为页面的某个部分显示的,通常需求是这样的,登录是全屏显示的,而普通页面是在页面的某个部分进行 ...

  8. springBoot启动的时候动态选择装载某些bean

    最近有这样一个场景,我们使用了elasticjob lite框架,希望某些job在指定服务器不启动.让spring动态的来装载所需要的job及相关bean 这个时候可以使用@Conditional家族 ...

  9. DeepLearning.ai学习笔记(五)序列模型 -- week2 自然语言处理与词嵌入

    一.词汇表征 首先回顾一下之前介绍的单词表示方法,即one hot表示法. 如下图示,"Man"这个单词可以用 \(O_{5391}\) 表示,其中O表示One_hot.其他单词同 ...

  10. laravel5.4 导出 Excel 表格

    1.执行 composer require maatwebsite/excel 2. composer.json 文件出现(或者手动添加) 3.在config目录下 app.php 添加参数 4.导出 ...