The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes. 题意:找到l、r区间内,差值最大和最小的相邻质数。
思路:因为n很大,所以不可能直接找出所有的质数后遍历
对于区间1~n,我们只需要找出√n 范围内的素数,倍增标记剩余区间的合数,就可以得到区间的所有质数。
 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; const int maxn = 1e5;
int prime[maxn];
int tot;
void get_pri(int n)
{
bool v[n+];
memset(v,,sizeof(v));
for(int i=; i<=n; i++)
{
if(!v[i])
prime[++tot] = i;
for(int j=i; j<=n/i; j++)
{
v[j*i] = ;
}
}
}
int main()
{ int l,r;
while(~scanf("%d%d",&l,&r))
{
tot = ;
get_pri(sqrt(r));
bool vis[r-l+];
memset(vis,,sizeof(vis));
for(int i=; i<=tot; i++)
{
for(int j=ceil(l*1.0/prime[i]); j<=r/prime[i]; j++)
{
if(j == )continue;
vis[prime[i]*j-l] = ;
}
}
int ans[r-l+];
int cnt = ;
for(int i=; i<=r-l; i++)
{
if(!vis[i])
{
if(i+l == )continue;
ans[++cnt] = i+l;
}
}
if(cnt < )
printf("There are no adjacent primes.\n");
else
{
int minn = 0x3f3f3f3f;
int maxx = ;
int id1;
int id2;
for(int i=; i<cnt; i++)
{
int tmp = ans[i+]-ans[i];
if(tmp < minn)
{
minn = tmp;
id1 = i;
}
if(tmp > maxx)
{
maxx = tmp;
id2 = i;
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",ans[id1],ans[id1+],ans[id2],ans[id2+]);
}
}
}
												

Prime Distance POJ - 2689 (数学 素数)的更多相关文章

  1. Prime Distance POJ - 2689 线性筛

    一个数 $n$ 必有一个不超过 $\sqrt n$ 的质因子. 打表处理出 $1$ 到 $\sqrt n$ 的质因子后去筛掉属于 $L$ 到 $R$ 区间的素数即可. Code: #include&l ...

  2. [ACM] POJ 2689 Prime Distance (筛选范围大素数)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 D ...

  3. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  4. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  5. POJ2689:Prime Distance(大数区间素数筛)

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  6. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  7. poj 2689 巧妙地运用素数筛选

    称号: 给出一个区间[L,R]求在该区间内的素数最短,最长距离. (R < 2 * 10^9 , R - L <= 10 ^ 6) 由数论知识可得一个数的因子可在开根号内得到. 所以,我们 ...

  8. poj 2689 (素数二次筛选)

    Sample Input 2 17 14 17 Sample Output 2,3 are closest, 7,11 are most distant. There are no adjacent ...

  9. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

随机推荐

  1. 【CF1151F】Sonya and Informatics(动态规划,矩阵快速幂)

    [CF1151F]Sonya and Informatics(动态规划,矩阵快速幂) 题面 CF 题解 考虑一个暴力\(dp\).假设有\(m\)个\(0\),\(n-m\)个\(1\).设\(f[i ...

  2. Educational Codeforces Round 53 (Rated for Div. 2) E. Segment Sum (数位dp求和)

    题目链接:https://codeforces.com/contest/1073/problem/E 题目大意:给定一个区间[l,r],需要求出区间[l,r]内符合数位上的不同数字个数不超过k个的数的 ...

  3. C# LINQ语法详解

    1.简单的linq语法 var ss = from r in db.Am_recProScheme select r; var ss1 = db.Am_recProScheme; string sss ...

  4. 缓存服务—Redis

    Redis 简介Redis 是一个开源(BSD 许可)的.内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件. 为什么要用 Redis 在高并发场景下,如果需要经常连接结果变动频繁的数据库, ...

  5. Centos 7最小化部署apollo

    https://github.com/nobodyiam/apollo-build-scripts

  6. ArcGis 属性表.dbf文件使用Excel打开中文乱码的解决方法

    2019年4月 拓展: ArcGis——好好的属性表,咋就乱码了呢? 2019年3月27日补充: 在ArcMap10.3+(根据官网描述应该是,作者测试使用10.5,可行)以后的版本,可以使用ArcT ...

  7. [物理学与PDEs]第1章习题12 Coulomb 规范下电磁场的标势、矢势满足的方程

    试给出在 Coulomb 规范下, 电磁场的标势 $\phi$ 与矢势 ${\bf A}$ 所满足的方程. 解答: 真空中的 Maxwell 方程组为 $$\bee\label{1_10_12:eq} ...

  8. Unity3D 热更新方案总结

    如何评价腾讯在Unity下的xLua(开源)热更方案? Unity 游戏用XLua的HotFix实现热更原理揭秘 腾讯开源手游热更新方案,Unity3D下的Lua编程 [Unity]基于IL代码注入的 ...

  9. Delete from join 用法

    delete (别名) from tblA (别名) left join tblb (别名) on...用法 1.创建使用的表及数据 CREATE TABLE YSHA ( code ), NAME ...

  10. Kaldi nnet3的fastlstm与标准LSTM

    标准LSTM:             与标准LSTM相比,Kaldi的fastlstm对相同或类似的矩阵运算进行了合并.     # Component specific to 'projected ...