The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

Input

Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

Output

For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

Sample Input

2 17
14 17

Sample Output

2,3 are closest, 7,11 are most distant.
There are no adjacent primes. 题意:找到l、r区间内,差值最大和最小的相邻质数。
思路:因为n很大,所以不可能直接找出所有的质数后遍历
对于区间1~n,我们只需要找出√n 范围内的素数,倍增标记剩余区间的合数,就可以得到区间的所有质数。
 #include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std; const int maxn = 1e5;
int prime[maxn];
int tot;
void get_pri(int n)
{
bool v[n+];
memset(v,,sizeof(v));
for(int i=; i<=n; i++)
{
if(!v[i])
prime[++tot] = i;
for(int j=i; j<=n/i; j++)
{
v[j*i] = ;
}
}
}
int main()
{ int l,r;
while(~scanf("%d%d",&l,&r))
{
tot = ;
get_pri(sqrt(r));
bool vis[r-l+];
memset(vis,,sizeof(vis));
for(int i=; i<=tot; i++)
{
for(int j=ceil(l*1.0/prime[i]); j<=r/prime[i]; j++)
{
if(j == )continue;
vis[prime[i]*j-l] = ;
}
}
int ans[r-l+];
int cnt = ;
for(int i=; i<=r-l; i++)
{
if(!vis[i])
{
if(i+l == )continue;
ans[++cnt] = i+l;
}
}
if(cnt < )
printf("There are no adjacent primes.\n");
else
{
int minn = 0x3f3f3f3f;
int maxx = ;
int id1;
int id2;
for(int i=; i<cnt; i++)
{
int tmp = ans[i+]-ans[i];
if(tmp < minn)
{
minn = tmp;
id1 = i;
}
if(tmp > maxx)
{
maxx = tmp;
id2 = i;
}
}
printf("%d,%d are closest, %d,%d are most distant.\n",ans[id1],ans[id1+],ans[id2],ans[id2+]);
}
}
}
												

Prime Distance POJ - 2689 (数学 素数)的更多相关文章

  1. Prime Distance POJ - 2689 线性筛

    一个数 $n$ 必有一个不超过 $\sqrt n$ 的质因子. 打表处理出 $1$ 到 $\sqrt n$ 的质因子后去筛掉属于 $L$ 到 $R$ 区间的素数即可. Code: #include&l ...

  2. [ACM] POJ 2689 Prime Distance (筛选范围大素数)

    Prime Distance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12811   Accepted: 3420 D ...

  3. POJ2689 Prime Distance(数论:素数筛选模板)

    题目链接:传送门 题目: Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Des ...

  4. poj 2689 Prime Distance(大区间筛素数)

    http://poj.org/problem?id=2689 题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对. 由于L<U<=2147483647,直接筛 ...

  5. POJ2689:Prime Distance(大数区间素数筛)

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  6. poj 2689 区间素数筛

    The branch of mathematics called number theory is about properties of numbers. One of the areas that ...

  7. poj 2689 巧妙地运用素数筛选

    称号: 给出一个区间[L,R]求在该区间内的素数最短,最长距离. (R < 2 * 10^9 , R - L <= 10 ^ 6) 由数论知识可得一个数的因子可在开根号内得到. 所以,我们 ...

  8. poj 2689 (素数二次筛选)

    Sample Input 2 17 14 17 Sample Output 2,3 are closest, 7,11 are most distant. There are no adjacent ...

  9. [POJ268] Prime Distance(素数筛)

    /* * 二次筛素数 * POJ268----Prime Distance(数论,素数筛) */ #include<cstdio> #include<vector> using ...

随机推荐

  1. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  2. 用IntelliJ IDEA 开发Spring+SpringMVC+Mybatis框架 分步搭建一:建立MAVEN Web项目

    一:创建maven web项目er

  3. iOS开发者知识普及,Swift 挑战 Objective-C,谁会笑到最后?

    前言: 目前全球共有超过 7 亿台 iPhone 处于活跃状态,全球约有2000万名 iOS 开发者,这造就了 iOS 作为全球第二大移动设备平台的状态. 虽然安卓系统的全球市场占有率超过 iOS 系 ...

  4. <二>企业级开源仓库nexus3实战应用–使用nexus3配置docker私有仓库

    1,安装nexus3. 这个地方略了,安装部署可以参考:nexus3安装配置. 2,配置走起. 1,创建blob存储. 登陆之后,先创建一个用于存储镜像的空间. 定义一个name,下边的内容会自动补全 ...

  5. 关于百度地图(离线)使用过程报“Cannot read property 'jb' of undefined ”错误的解决办法

    使用百度地图(离线)API时,地图无法显示,f12查看报错: BaiduApi_2.0.js:1056 Uncaught TypeError: Cannot read property 'jb' of ...

  6. ACM-ICPC 2018 徐州赛区网络预赛 G Trace(思维+set)

    https://nanti.jisuanke.com/t/31459 题意 n个矩阵,不存在包含,矩阵左下角都在(0,0),给右上角坐标,后来的矩阵会覆盖前面的矩阵,求矩阵周长. 分析 set按照x或 ...

  7. HDU 5983(模拟魔方 模拟)

    题意是说给定一个 2*2 魔方的各个面的情况,问是否能转动不超过一次使得魔方复原. 思路是先在输入的时候统计一下已完成的面数,要想以最多一次的转动使得魔方复原,那么已完成的面数只能是 2 面或者 6 ...

  8. Richard Sabey于2004年给出了由123456789各出现一次的e的估计

  9. h3c mstp的举例

    h3c交换机的图如下: 分别对于SWA,SWB,SWC,SWD,SWE 配置如下: SWA: vlan 10 vlan 20 vlan 30 region-name h3c instance 0 vl ...

  10. 部署自己的服务器ubuntu

    一直都是在公司的服务器上工作,想搞点自己的idea比较不方便,所以近期租了要给自己的阿里云服务器. 以下为必要的软件的安装流程: jdk+jre: 1.去官网下载 jdk-linux版本: 2.解压压 ...