[P3676]小清新数据结构题
Description:
给你一棵树,每次询问以一个点为根时所有子树点权和的平方和
带修改
Hint:
\(n\le 2*10^5\)
Solution:
这题只要推出式子就很简单了
如果不换根这个平方和树剖直接做就行了
考虑换根的影响了哪些点的贡献
显然只影响了\(1\)到\(u\)的路径上的点
把1到\(u\)这条路径上的点依次标记为\(1,2,3......k\)
我们设\(a_i\)为以1为根时\(i\)的点权和,\(b_i\)为以\(u\)为根的点权和
\(Ans=ans_1-\sum a_i^2 + \sum b_i^2\)
注意到\(a_{i+1}+b_i=sum\)
\(Ans=ans_1-\sum a_i^2 -a_1^2+b_k^2 + \sum (sum-a_{i+1})^2\)
消掉\(\sum a_i^2\)
\(Ans=ans_1-k*sum^2-2*sum*\sum a_i\)
预处理出\(ans1\),每次算一条链就行
(注意最后并没有算\(a_1\))
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const ll mxn=1e6+5;
ll n,m,cnt,hd[mxn];
inline ll read() {
char c=getchar(); ll x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(ll &x,ll y) {if(x<y) x=y;}
inline void chkmin(ll &x,ll y) {if(x>y) x=y;}
struct ed {
ll to,nxt;
}t[mxn<<1];
ll df;
ll a[mxn],f[mxn],sz[mxn],rk[mxn],dfn[mxn],top[mxn],son[mxn];
ll tr[mxn<<2],pw[mxn<<2],tag[mxn<<2],len[mxn<<2],sum[mxn];
inline void add(ll u,ll v) {
t[++cnt]=(ed) {v,hd[u]}; hd[u]=cnt;
}
void dfs1(ll u,ll fa) {
f[u]=fa; sz[u]=1; sum[u]=a[u];
for(ll i=hd[u];i;i=t[i].nxt) {
ll v=t[i].to;
if(v==fa) continue ;
dfs1(v,u); sz[u]+=sz[v]; sum[u]+=sum[v];
if(sz[son[u]]<sz[v]) son[u]=v;
}
}
void dfs2(ll u,ll tp) {
dfn[u]=++df; rk[df]=u; top[u]=tp;
if(son[u]) dfs2(son[u],tp);
for(ll i=hd[u];i;i=t[i].nxt) {
ll v=t[i].to;
if(v==f[u]||v==son[u]) continue ;
dfs2(v,v);
}
}
void push_up(ll p) {
tr[p]=tr[ls]+tr[rs];
pw[p]=pw[ls]+pw[rs];
}
void push_down(ll p) {
if(tag[p]) {
tag[ls]+=tag[p]; tag[rs]+=tag[p];
pw[ls]+=2*tr[ls]*tag[p]+tag[p]*tag[p]*len[ls];
pw[rs]+=2*tr[rs]*tag[p]+tag[p]*tag[p]*len[rs];
tr[ls]+=len[ls]*tag[p];
tr[rs]+=len[rs]*tag[p];
tag[p]=0;
}
}
void build(ll l,ll r,ll p) {
if(l==r) {
len[p]=1;
tr[p]=sum[rk[l]];
pw[p]=sum[rk[l]]*sum[rk[l]];
return ;
}
ll mid=(l+r)>>1;
build(l,mid,ls); build(mid+1,r,rs);
push_up(p); len[p]=r-l+1;
}
void update(ll l,ll r,ll ql,ll qr,ll val,ll p) {
if(ql<=l&&r<=qr) {
tag[p]+=val;
pw[p]+=val*val*len[p]+2*val*tr[p];
tr[p]+=val*len[p];
return ;
}
ll mid=(l+r)>>1; push_down(p);
if(ql<=mid) update(l,mid,ql,qr,val,ls);
if(qr>mid) update(mid+1,r,ql,qr,val,rs);
push_up(p);
}
ll query(ll l,ll r,ll ql,ll qr,ll p) {
if(ql<=l&&r<=qr) return tr[p];
ll mid=(l+r)>>1; push_down(p); ll res=0;
if(ql<=mid) res+=query(l,mid,ql,qr,ls);
if(qr>mid) res+=query(mid+1,r,ql,qr,rs);
return res;
}
ll tp;
void modify(ll x,ll y) {
y-=a[x]; a[x]+=y; tp+=y;
while(x) {
update(1,n,dfn[top[x]],dfn[x],y,1);
x=f[top[x]];
}
}
ll ask(ll x) {
ll ans=pw[1],res1=0,res2=0;
while(top[x]!=1) {
res1+=dfn[x]-dfn[top[x]]+1;
res2+=query(1,n,dfn[top[x]],dfn[x],1);
x=f[top[x]];
}
res1+=dfn[x]-1;
if(x!=1) res2+=query(1,n,dfn[1]+1,dfn[x],1);
return ans+tp*(res1*tp-res2*2);
}
int main()
{
n=read(); m=read(); ll u,v,opt,x,y;
for(ll i=1;i<n;++i) {
u=read(); v=read();
add(u,v); add(v,u);
}
for(ll i=1;i<=n;++i) a[i]=read();
dfs1(1,0); dfs2(1,1); build(1,n,1); tp=sum[1];
for(ll i=1;i<=m;++i) {
opt=read();
if(opt==1) {
x=read(); y=read();
modify(x,y);
}
else x=read(),printf("%lld\n",ask(x));
}
return 0;
}
[P3676]小清新数据结构题的更多相关文章
- 洛谷 P3676 小清新数据结构题
https://www.luogu.org/problemnew/show/P3676 这题被我当成动态dp去做了,码了4k,搞了一个换根的动态dp #include<cstdio> #i ...
- 洛谷P3676 小清新数据结构题 【树剖 + BIT】
题目链接 洛谷P3676 题解 我们先维护\(1\)为根的答案,再考虑换根 一开始的答案可以\(O(n)\)计算出来 考虑修改,记\(s[u]\)表示\(u\)为根的子树的权值和 当\(u\)节点产生 ...
- 洛谷P3676 小清新数据结构题(动态点分治+树链剖分)
传送门 感觉这题做下来心态有点崩……$RMQ$求$LCA$没有树剖快我可以理解为是常数太大……然而我明明用了自以为不会退化的点分然而为什么比会退化的点分跑得反而更慢啊啊啊啊~~~ 先膜一波zsy大佬 ...
- 洛谷 P3676 - 小清新数据结构题(动态点分治)
洛谷题面传送门 题目名称好评(实在是太清新了呢) 首先考虑探究这个"换根操作"有什么性质.我们考虑在换根前后虽然每个点的子树会变,但整棵树的形态不会边,换句话说,割掉每条边后,得到 ...
- 洛谷P3676 小清新数据结构题 [动态点分治]
传送门 思路 这思路好妙啊! 首先很多人都会想到推式子之后树链剖分+线段树,但这样不够优美,不喜欢. 脑洞大开想到这样一个式子: \[ \sum_{x} sum_x(All-sum_x) \] 其中\ ...
- 【刷题】洛谷 P3676 小清新数据结构题
题目背景 本题时限2s,内存限制256M 题目描述 在很久很久以前,有一棵n个点的树,每个点有一个点权. 现在有q次操作,每次操作是修改一个点的点权或指定一个点,询问以这个点为根时每棵子树点权和的平方 ...
- 并不对劲的p3676:小清新数据结构题
题目大意 有一棵有\(n\)(\(n\leq 2*10^5\))个点的树,要进行\(q\)(\(q\leq 2*10^5\))次操作,每次操作是以下两种中的一种: 1.修改一个点的点权 2.指定一个点 ...
- 【Luogu3676】小清新数据结构题(动态点分治)
[Luogu3676]小清新数据结构题(动态点分治) 题面 洛谷 题解 先扯远点,这题我第一次看的时候觉得是一个树链剖分+线段树维护. 做法大概是这样: 我们先以任意一个点为根,把当前点看成是一棵有根 ...
- [Luogu3676]小清新数据结构题
题面戳我 题意:给一棵树,树上有点权,每次操作为修改一个点的点权,或者是询问以某个点为根时,每棵子树(以每个点为根,就有n棵子树)点权和的平方和. \(n\le2*10^5\),保证答案在long l ...
随机推荐
- 项目管理——WBS工作分解法
首先我们要了解什么是WBS工作分解法 工作分解结构(Work Breakdown Structure,简称WBS)跟因数分解是一个原理,就是把一个项目,按一定的原则分解,项目分解成任务,任务再分解成一 ...
- 让WinSCP和Putty一直保持连接
转: 让WinSCP和Putty一直保持连接 2015年08月14日 01:08:19 zcczbq 阅读数:13173 标签: puttywinscp 更多 个人分类: Operation 版权 ...
- nodemon 热更新
sudo npm i -g nodemon nodemon app.js
- 第七节:语法总结(1)(自动属性、out参数、对象初始化器、var和dynamic等)
一. 语法糖简介 语法糖也译为糖衣语法,是由英国计算机科学家彼得·约翰·兰达(Peter J. Landin)发明的一个术语,指计算机语言中添加的某种语法,这种语法对语言的功能并没有影响,但是更方 ...
- velocity 新手用小常识--开源,简单易上手
项目中经常用到的 .vm 后缀文件是什么? 基于 java 的 velocity 模版引擎的一种页面控制文件,是一些类似 html 语句和一种叫 VLT 的语句构成 velocity --美 [v ...
- java包
首先是java.io java.lang java.util java.lang.math
- RT-SA-2019-005 Cisco RV320 Command Injection Retrieval
Advisory: Cisco RV320 Command Injection RedTeam Pentesting discovered a command injection vulnerabil ...
- PhpStorm+xdebug调试——更新
之前写过一篇<PhpStorm+xdebug+postman调试>,但是经过后来一段时间的使用,发现有些累赘.这里介绍一种比较简单方便的操作. 在上一篇文章中有一段“ 7.设置Server ...
- 爬虫时遇到的' 编码错误gbk ' 的解决方案
# 每次请求一次,然后写文件,这样可以规避多次请求触发反爬虫 r = requests.get('https://www.pearvideo.com/video_1522192') html = r. ...
- Spring注解@Configuration和Java Config
1.从Spring 3起,JavaConfig功能已经包含在Spring核心模块,它允许开发者将bean定义和在Spring配置XML文件到Java类中.但是,仍然允许使用经典的XML方式来定义bea ...