语音识别传统方法(GMM+HMM+NGRAM)概述
春节后到现在近两个月了,没有更新博客,主要是因为工作的关注点正从传统语音(语音通信)转向智能语音(语音识别)。部门起了个新项目,要用到语音识别(准备基于Kaldi来做)。我们之前做的传统音频已基本成熟,就开始关注在语音识别上了。对于我们来说,这是个全新的领域(虽然都是语音相关的,但是语音通信偏信号处理,传统语音识别方法偏概率统计),需要学习的知识很多,所以这段时间主要是在学习新知识了,主要学习了数学(高数/线性代数/概率统计,这应该算复习)、机器学习基础知识、深度学习、语音识别传统方法等。由于刚开始学,还没实践,有的还是一知半解。学的过程中也要有输出(把自己学的知识讲给组内其他同学听,并一起讨论,让大家都快速入门),这也能促进把学的东西掌握的更好。我花了两周的时间学习了语音识别的传统方法(主要学习方式是看文档和博客),基本上掌握了其方法,也做了PPT给组内同学讲(做PPT时用了一些博客上的图,谢谢这些博主,这里就不一一列举了)。今天就把这个PPT share出来,给也想入门语音识别的朋友做个参考。由于还没实践,有什么不太准确或不准确的地方还请指出。
语音识别传统方法主要分两个阶段:训练和识别,训练阶段主要是生成声学模型和语言模型给识别阶段用。传统方法主要有五大模块组成,分别是特征提取(得到每帧的特征向量),声学模型(用GMM从帧的特征向量得到状态,再用HMM从状态得到音素)、发音字典(从音素得到单词)、语言模型(从单词得到句子)、搜索解码(根据声学模型、发音字典和语言模型得到最佳文本输出),即从帧得到特征向量(特征提取干的话),从特征向量得到状态(GMM干的话),从状态得到音素(HMM干的话),从音素得到单词(发音字典干的活),从单词得到句子(语言模型干的活)。传统方法除了在特征提取上用到信号处理知识,其余全都是概率统计等知识,所以说语音识别和语音通信是两个完全不同的领域。
经过近十年的发展,语音识别已经从传统方法演进到基于深度学习的方法,识别率也有了质的提升,而且还在快速的演变中,现在商用的语音识别系统都是基于深度学习实现的。对于传统方法而言,只会出现在文章教材中了,但作为新手,在入门时学习它还是很有必要的。只有了解了传统方法再去学习深度学习方法,才知道深度学习方法是怎么样基于传统方法一步步演变的。下面就是我的PPT。
语音识别传统方法(GMM+HMM+NGRAM)概述的更多相关文章
- HMM的概述(五个基本元素、两个假设、三个解决的问题)
一.五个基本元素 HMM是个五元组 λ =( S, O , π ,A,B) S:状态值集合,O:观察值集合,π:初始化概率,A:状态转移概率矩阵,B:给定状态下,观察值概率矩阵 二.两个假设 HM ...
- 三个小白是如何在三个月内搭一个基于kaldi的嵌入式在线语音识别系统的
前面的博客里说过最近几个月我从传统语音(语音通信)切到了智能语音(语音识别).刚开始是学语音识别领域的基础知识,学了后把自己学到的写了PPT给组内同学做了presentation(语音识别传统方法(G ...
- Atitit 语音识别的技术原理
Atitit 语音识别的技术原理 1.1. 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),2 1.2. 模型目前,主流的大词汇量语音识别系统多 ...
- GMM-HMM语音识别模型 原理篇
本文简明讲述GMM-HMM在语音识别上的原理,建模和測试过程.这篇blog仅仅回答三个问题: 1. 什么是Hidden Markov Model? HMM要解决的三个问题: 1) Likelihood ...
- 基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matchi ...
- kaldi的TIMIT实例一
TIMIT语音库是IT和MIT合作音素级别标注的语音库,用于自动语音识别系统的发展和评估,包括来自美式英语,8个地区方言,630个人. 每个人读10个句子,每个发音都是音素级别.词级别文本标注,16k ...
- 【Todo】【转载】深度学习&神经网络 科普及八卦 学习笔记 & GPU & SIMD
上一篇文章提到了数据挖掘.机器学习.深度学习的区别:http://www.cnblogs.com/charlesblc/p/6159355.html 深度学习具体的内容可以看这里: 参考了这篇文章:h ...
- 杂记:腾讯暑期实习 Web 后端开发面试经历
今天面试(一面)腾讯暑期实习 Web 后端开发,一言难尽. 第一部分,常规的自我介绍. 介绍完,面试官问我对人工智能有什么理解?深度学习和机器学习的区别?对调参有什么见解?语音识别中怎样运用了机器学习 ...
- kaildi讲解
转载声明:本文为转载文章 作者:ferb2015 原文地址:https://blog.csdn.net/eqiang8848/article/details/81543599 kaldi是一个开源的语 ...
随机推荐
- python之99乘法表
#99乘法表 fir=1 while fir<=9: sec=1 while sec<=fir: print(str(fir)+'*'+str(sec)+'='+str(fir*sec)) ...
- day14 生成器迭代器
迭代器(iterator) 可迭代对象: 可以使用迭代器取出数据的对象 判断一个对象是否是可迭代对象,就看这个对象有没有实现__iter__方法 所有的容器类型(包括字符串)都是可迭代的 迭代器的使用 ...
- js中Attribute和property的区别与联系
相信大多数的初学者对js中的property和attribute的关系很容易搞混, Attribute大多用于DOM的操作中,比如ele.attributes指的是一个元素的特性集合,是一个nodel ...
- 使用Python画一个带坐标轴的圆
Download Microsoft Visual Studio Microsoft Visual Studio enables you develop your python Application ...
- postman中常见的错误
get请求400错误,post请求405错误 (2016-08-31 17:19:27)转载▼出现错误原因,后台接收参数part使用的是List,参数的属性对不上,传参使用的类型是String,改为p ...
- java变量的自动提升与强制转换
所有的byte型.short型和char的值将被提升到int型 一个字节可以提升为4个字节 4个字节不可以降为一个字节 强制转换4个字节转换为一个字节 [丢失精度] byte b = 3; b = ( ...
- 【JMeter】生成报告-Dashboard Report
Dashboard Report 用于生成HTML页面格式图形化报告 1.在JMmeter性能测试结束时,自动生成本次测试的HTML图形化报告 2.使用一个已有的结果文件(如CSV)来生成该次的HTM ...
- PHP分帧后台模板页面css样式,js引入方法
一,首先把下载好的分帧后台模板放到对应的目录中,HTML显示页面放到View目录中,CSS和JS.img图片等公共资源放到include目录中 二.然后开始准备更改CSS和JS , img路径操作:( ...
- js作用域和内存
对于一本编程语言来讲,个人认为,最基本的就是存储,在存储,读取,计算值的时候是按照一定的规则来操作,这套规则呢就叫做作用域. 值保存,读取,的时候需要一个范围,如果以按照函数为单位的话就做函数作用域, ...
- 20164322 韩玉婷-----Exp6 信息搜索与漏洞扫描
1.实践目标 掌握信息搜集的最基础技能与常用工具的使用方法. 2.实践内容 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具 ...