Python生成器、推导式之前襟后裾
生成器
函数体内有yield选项的就是生成器,生成器的本质是迭代器,由于函数结构和生成器结构类似,可以通过调用来判断是函数还是生成器,如下:
def fun():
yield "我是生成器"
print(fun()) # 打印内容如下:
<generator object fun at 0x0000000002160ED0>
生成器的优点就是节省内存.
Python获取生成器的二种方式:
- 通过函数获取生成器
- 通过生成器推导式创建生成器
通过函数获取生成器
def fun():
print("fun")
yield "生成器"
g = fun()
print(g) # 打印函数名查看是否是生成器 # 打印内容如下:
<generator object fun at 0x0000000000510ED0>
从打印内容可以看出是生成器,但是发现生成器里面的内容没有被打印,那如何打印生成器内容呢?我们可以把生成器理解成迭代器的变异版,所以要打印生成器的内容,与迭代器类似,创建生成器对象后,可以使用生成器.__next__()来打印生成器内容,或者next()、send()等来打印生成器,如下:
使用.__next__()来打印生成器中的内容:
def fun():
print("我在yield 1的上面")
yield "yield 1"
print("我在yield 1的下面")
g = fun() # 创建生成器对象
print(g.__next__()) # 打印生成器里面的内容 # 打印内容如下
我在yield 1的上面
yield 1
从上面的打印结果可以发现yield下面的print语句没有被打印,到yield停止了。
def fun():
print("我在yield 1 上面")
yield "我是yield 1"
print("我在yield 1 下面")
yield "我是yield 2"
print("我在yield 2 下面")
g = fun() # 创建生成器对象
print(g.__next__())
print(g.__next__()) # 打印内容如下
我在yield 1 上面
我是yield 1
我在yield 1 下面
我是yield 2
由上面两个事例我们可以看出就是每next一次就执行一次yield上面的代码一次,yield下面的代码不会被执行,这就是生成器的惰性机制。
下面使用next()打印生成器内容:
def fun():
print("我在yield 1 上面")
yield "我是yield 1"
print("我在yield 1 下面")
yield "我是yield 2"
print("我在yield 2 下面") g = fun()
print(next(g)) # next(g)打印生成器内容
print(next(g)) # next(g)打印生成器内容 # 打印内容如下
我在yield 1 上面
我是yield 1
我在yield 1 下面
我是yield 2
与.__next__()功能类似
在使用send(参数)打印生成器内容:
send方法可以给上一层的yield传递一个值,如果上一个yield没有值的话send的参数将被忽略,如果有值yield的值将被改变成当前的参数,还有需要注意的地方就是如果send(参数)做为第一次迭代,由于上一层没有yield,所以没有办法传参,会导致出现错误,错误内容如下:
TypeError: can't send non-None value to a just-started generator
我们将send(None)作为第一次调用即可,然后在第二次调用时可以传适当的参数。如下:
def fun():
val = yield "我是yield 1"
print(val)
val = yield "我是yield 2"
print(val)
yield "我是yield 3"
print("我在yield 3 下面") g = fun()
print(g.send(None))
print(g.send("我是send 2"))
print(g.send("我是send 3")) # 打印内容如下
我是yield 1
我是send 2
我是yield 2
我是send 3
我是yield 3
使用for循环打印生成器所有内容。
def fun():
yield "我是yield 1"
yield "我是yield 2"
yield "我是yield 3" g = fun() # 创建生成器对象
for g_buf in g: # 使用for循环打印生成器对象
print(g_buf) # 打印内容如下
我是yield 1
我是yield 2
我是yield 3
yield可以返回任何数据类型,这里以列表为事例:
def fun():
list_1 = [1,2,3,4,5]
yield list_1 # 将整个列表作为返回值传给生成器对象
g = fun() # 创建生成器对象
print(g.__next__()) # 打印生成器对象 # 打印内容如下:
[1, 2, 3, 4, 5]
如果想要yield从列表中每次返回一个元素可以使用yield from 列表来实现,如下:
def fun():
list_1 = [1,2,3,4,5]
yield from list_1
g = fun() # 创建生成器对象
print(g.__next__()) # 打印生成器对象内容 # 打印内容如下:
1
可以发现只打印了列表中的一个元素,可以使用for循环打印所有内容:
def fun():
list_1 = [1,2,3,4,5]
yield from list_1
g = fun()
for g_buf in g:
print(g_buf) # 打印内容如下:
1
2
3
4
5
相当于执行了5次print(g.__next__()) 打印生成器所有内容。
推导式
列表推导式
如给list_1列表赋值,常规做法如下:
list_1 = []
for num in range(10):
list_1.append(num)
print(list_1) # 打印内容如下
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
使用列表推导式如下:
list_1 = [num for num in range(10)]
list_2 = ["Python: %s" % num for num in range(3)]
print(list_1)
print(list_2) # 打印内容如下
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
['Python: 0', 'Python: 1', 'Python: 2']
列表推导式还可以进行筛选,如下:
list_1 = [num for num in range(20) if num < 5 or num == 15]
print(list_1) # 打印内容如下:
[0, 1, 2, 3, 4, 15]
升级一点,将一个嵌套列表中以"a"开头和以"h"开头的元素存放在一个空列表中,基础写法如下:
names = [['abc', 'abb', 'zzz'],["hello","world","xiaoming"]]
list_names = []
for name_1 in names:
if type(name_1) == list:
for name_2 in name_1:
if name_2.startswith("a") or name_2.startswith("h"):
list_names.append(name_2)
print(list_names) # 打印内容如下:
['abc', 'abb', 'hello']
使用列表推导法:
names = [['abc', 'abb', 'zzz'],["hello","world","xiaoming"]]
list_names = [name_2 for name_1 in names if type(name_1) for name_2 in name_1 if name_2.startswith("a") or\
name_2.startswith("h")] # 打印内容如下:
['abc', 'abb', 'hello']
生成器推导式
与列表推导式类似,只不过列表是使用[],生成器推导式使用的是()。
g_1 = (num for num in range(10))
print(g_1)
print(g_1.__next__())
print(g_1.__next__())
# 打印内容如下
<generator object <genexpr> at 0x0000000002FAACA8>
0
1
我们知道生成器是具有惰性的,每次只能获取一条数据,下面使用for循环打印所有内容:
g_1 = (num for num in range(10))
for num in g_1:
print(num,end=' ') # 打印内容如下
0 1 2 3 4 5 6 7 8 9
生成器的筛选与列表推导式用法一样,只不过是()。
如下:过滤1-20内的所有偶数。
g_1 = (num for num in range(20) if num % 2 == 0)
for i in g_1:
print(i,end=" ") # 打印内容如下
0 2 4 6 8 10 12 14 16 18
生成器表达式和列表推导式的区别:
- 列表推导式比较耗内存,一次性加载全部数据,生成器表达式几乎不占用内存,使用的时候才分配和使用内存。
- 得到的值不一样,列表推导式得到的是一个列表全部数据,生成器表达式获取的是一个生成器。
字典推导式
list_1 = ["电视剧","电影"]
list_2 = ["上海滩","黄飞鸿"]
dict_1 = {list_1[i]:list_2[i] for i in range(len(list_1))}
print(dict_1) # 打印内容如下:
{'电视剧': '上海滩', '电影': '黄飞鸿'}
集合推导式
集合的特点:无序、不重复所以集合推导式自带去重功能。
list_1 = [1,2,3,4,2,3,5]
set_1 = {i for i in list_1} # 集合推导式
print(set_1) # 打印内容如下:
{1, 2, 3, 4, 5}
总结:
- 推导式有列表推导式、生成器推导式、字典推导式、集合推导式。
- 生成器表达式:(结果 for 变量 in 可迭代对象 if 条件筛选)
- 生成器表达式可以直接获取到生成器对象,生成器对象具有惰性,每次只能获取一条内容,可以使用for循环打印生成器所有的内容。
下一篇:装饰器,常用内置函数:https://www.cnblogs.com/caesar-id/p/10328512.html
Python生成器、推导式之前襟后裾的更多相关文章
- Python——生成器&推导式
生成器 生成器的本质就是迭代器,那么还为什么有生成器呢,两者唯一的不同就是迭代器都是Python给你提供能够的已经写好的工具或者通过数据转化得来的.而生成器是需要我们自己用Python代码构建的工具. ...
- Python生成器/推导式/生成器表达式
一 生成器 生成器的本质就是迭代器 生成器的特点和迭代器一样,取值方式和迭代器一样(__next__(), send(): 给上一个yield传值) 生成器一般由生成器函数或者生成器表达式来创 ...
- python 生成器推导式与列表推导式的区别
生成器表达式现用现生成,列表推导式一次性生成静态数据 L = [2, 3, 5, 7] L2 = (x**2+1 for x in L) it = iter(L2) print(next(it)) L ...
- 12.Python略有小成(生成器,推导式,内置函数,闭包)
Python(生成器,推导式,内置函数,闭包) 一.生成器初始 生成器的本质就是迭代器,python社区中认为生成器与迭代器是一种 生成器与迭代器的唯一区别,生成器是我们自己用python代码构建成的 ...
- Python进阶(四)----生成器、列表推导式、生成器推导式、匿名函数和内置函数
Python进阶(四)----生成器.列表推导式.生成器推导式.匿名函数和内置函数 一丶生成器 本质: 就是迭代器 生成器产生的方式: 1.生成器函数
- 记录我的 python 学习历程-Day12 生成器/推导式/内置函数Ⅰ
一.生成器 初识生成器 生成器的本质就是迭代器,在python社区中,大多数时候都把迭代器和生成器是做同一个概念. 唯一的不同就是: 迭代器都是Python给你提供的已经写好的工具或者通过数据转化得来 ...
- Python函数04/生成器/推导式/内置函数
Python函数04/生成器/推导式/内置函数 目录 Python函数04/生成器/推导式/内置函数 内容大纲 1.生成器 2.推导式 3.内置函数(一) 4.今日总结 5.今日练习 内容大纲 1.生 ...
- Python之路-迭代器 生成器 推导式
迭代器 可迭代对象 遵守可迭代协议的就是可迭代对象,例如:字符串,list dic tuple set都是可迭代对象 或者说,能被for循环的都是可迭代对象 或者说,具有对象.__iter__方法的都 ...
- python 列表推导式,生成器推导式,集合推导式,字典推导式简介
1.列表推导式multiples = [i for i in range(30) if i % 2 is 0]names = [[],[]]multiples = [name for lst in n ...
随机推荐
- POI生成EXCEL文件
POI生成EXCEL文件 一.背景 根据指定格式的JSON文件生成对应的excel文件,需求如下 支持多sheet 支持单元格合并 支持插入图片 支持单元格样式可定制 需要 标题(title),表头( ...
- 本地连接虚拟机_环境搭建01_VMWARE/XShell/CentOS
今天起准备搭建一套环境用来学习redis,dubbo,docker,nginx. 环境准备: 1.VMware12: https://pan.baidu.com/s/1-LnqfrWw8ZjQdmG ...
- python-redistest
# !/usr/bin/python3.4 # -*- coding: utf-8 -*- import redis import time # 这里用来读取ip def getips(): ip = ...
- Hive篇--相关概念和使用二
一.基本概念 Hive分桶: 1.概念 分桶表是对列值取哈希值的方式,将不同数据放到不同文件中存储.对于hive中每一个表.分区都可以进一步进行分桶.(可以对列,也可以对表进行分桶)由列的哈希值除以桶 ...
- npm 包的 发布 流程
npm 包的发布流程 本文主要是针对 还未曾发布过自己的 npm 的同学,阐述一下 npm 的发布流程 熟悉的同学,可以绕道了. 首先你得有一个 自己的 npmjs.com 的账号 (没有的话,就到 ...
- (二)通过fork编写一个简单的并发服务器
概述 那么最简单的服务端并发处理客户端请求就是,父进程用监听套接字监听,当有连接过来时那么监听套接字就变成了已连接套接字(源和目的的IP和端口都包含了),这时候就可以和客户端通信,但此时其他客户端无法 ...
- angr进阶(2)C++程序的处理
如何应对C++程序 angr只实现了C库,所以应对C++程序,需要使用full_init_state方法,并设置unicorn引擎.csaw_wyvern 并且这个过程相对于C通常会更长 st = p ...
- 程序员十大热门flag,有你的吗?
2018的尾声,南方人期盼已久的下雪天终于到了,实在是太鸡冻了! 而赏雪的喜悦也伴随着寒冷的忧伤 早上起床越来越难,衣服怎么裹都还是冷 这时,穿搭届的神话般的人物——程序员们,可能又要引起轰动了吧! ...
- Docker最全教程——从理论到实战(七)
在本系列教程中,笔者希望将必要的知识点围绕理论.流程(工作流程).方法.实践来进行讲解,而不是单纯的为讲解知识点而进行讲解.也就是说,笔者希望能够让大家将理论.知识.思想和指导应用到工作的实际场景和实 ...
- Linux下Oracle client客户端安装
0.zip格式 (0)下载地址: a.Oracle官网 (1)安装过程: a.将zip文件分别解压到/software/下,放在同一个目录instandclient_11_2/下 b.在/softwa ...