BZOJ

不是很懂他们为什么都要DFS三次。于是稳拿Rank1 qwq。

(三道题两个Rank1一个Rank3效率是不是有点高qwq?)


记以\(1\)为根DFS时每个点的深度是\(dep_i\)。对于一条限制\((a,b,D)\),满足条件的点\(x\)满足:\(dep_a+dep_b-2dep_x\leq D\Rightarrow dep_x\geq\frac{dep_u+dep_v-D}{2}\)。

那么\(dep_x\)最小是\(\max\{0,\ \lceil\frac{dep_u+dep_v-D}{2}\rceil\}\)(先不考虑负数的情况)。

记\(p\)为所有\(m\)条限制中,\(\max\{0,\ \lceil\frac{dep_u+dep_v-D}{2}\rceil\}\)最大的那个点\(x\)。

有一个结论是:若\(p\)不能满足所有限制,则一定无解。否则\(p\)为一个合法的解。

\(p\)就是要求最严格的限制所对应的那个点。对于和\(p\)不在同一棵子树里的限制,显然该限制要满足\(p\);在同一棵子树内的,因为\(p\)是最严格的,所以只要满足\(p\)就可以啦。


//13032kb	76ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define MAXIN 500000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=3e5+5; int Enum,H[N],nxt[N<<1],to[N<<1],fa[N],dep[N],A[N],B[N],D[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
void DFS(int x)
{
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x]) fa[v]=x, dep[v]=dep[x]+1, DFS(v);
} int main()
{
for(int T=read(); T--; )
{
const int n=read(),m=read();
Enum=0, memset(H,0,n+1<<2);
for(int i=1; i<n; ++i) AE(read(),read());
dep[1]=0, fa[1]=0, DFS(1);
int mx=0,p=0;
for(int i=1; i<=m; ++i)
{
int t=dep[A[i]=read()]+dep[B[i]=read()]-(D[i]=read());
if(t>mx) mx=t, p=i;
}
if(!mx) {puts("TAK 1"); continue;}
int x=A[p];
for(int t=dep[x]-(mx+1)/2; t>0; --t,x=fa[x]);
dep[x]=0, fa[x]=0, DFS(x);
bool fg=1;
for(int i=1; i<=m; ++i)
if(dep[A[i]]+dep[B[i]]>D[i]) {fg=0; break;}
fg?printf("TAK %d\n",x):puts("NIE");
}
return 0;
}

BZOJ.4151.[AMPPZ2014]The Cave(结论)的更多相关文章

  1. bzoj 4152[AMPPZ2014]The Captain

    bzoj 4152[AMPPZ2014]The Captain 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用. ...

  2. 【BZOJ 4151 The Cave】

    Time Limit: 5 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 293  Solved: 144[Submit][Status][Di ...

  3. 【BZOJ】2049: [Sdoi2008]Cave 洞穴勘测(lct/并查集)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2049 bzoj挂了..在wikioi提交,,1A-写lct的速度越来越快了-都不用debug-- 新 ...

  4. BZOJ 4144: [AMPPZ2014]Petrol

    4144: [AMPPZ2014]Petrol Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 457  Solved: 170[Submit][Sta ...

  5. 循环队列+堆优化dijkstra最短路 BZOJ 4152: [AMPPZ2014]The Captain

    循环队列基础知识 1.循环队列需要几个参数来确定 循环队列需要2个参数,front和rear 2.循环队列各个参数的含义 (1)队列初始化时,front和rear值都为零: (2)当队列不为空时,fr ...

  6. BZOJ 4152: [AMPPZ2014]The Captain( 最短路 )

    先按x排序, 然后只有相邻节点的边才有用, 我们连起来, 再按y排序做相同操作...然后就dijkstra ---------------------------------------------- ...

  7. BZOJ 4143: [AMPPZ2014]The Lawyer( sort )

    水题... 排序搞出每天的会议有哪些, 然后再按照会议的开始时间和结束时间排序, 最晚开始的和最早结束的会议不是同一场而且最晚开始的时间>最早结束的会议就有可能方案 -------------- ...

  8. BZOJ 4145: [AMPPZ2014]The Prices( 状压dp + 01背包 )

    我自己只能想出O( n*3^m )的做法....肯定会T O( nm*2^m )做法: dp( x, s ) 表示考虑了前 x 个商店, 已买的东西的集合为s. 考虑转移 : 先假设我们到第x个商店去 ...

  9. BZOJ.4144.[AMPPZ2014]Petrol(Kruskal重构树)

    BZOJ 看别人代码的时候发现哪一步都很眼熟,突然想起来,就在四个月前我好像看过还给别人讲过?mmp=v= 果然不写写就是容易忘.写了好歹忘了的时候还能复习呢(虽然和看别人的好像也没多少差别?). 首 ...

随机推荐

  1. 【转载】汇编调试程序Debug使用

    https://blog.csdn.net/Notzuonotdied/article/details/70888205

  2. Koa与Node.js开发实战(1)——Koa安装搭建(视频演示)

    学习架构: 由于Koa2已经支持ES6及更高版本,包括支持async方法,所以请读者保证Node.js版本在7.6.0以上.如果需要在低于7.6的版本中应用Koa的async方法,建议使用Babel ...

  3. (三)Python运算符

    一.python运算符相关 Python语言支持以下类型的运算符: 算术运算符 比较(关系)运算符 赋值运算符 逻辑运算符 位运算符 成员运算符 身份运算符 运算符优先级 1.python算数运算符 ...

  4. “不能在dropdownlist中选择多个项

    DropDownList.ClearSelection(); DropDownList.SelectedItem.Text = "value值";

  5. 移动端雪碧图sprite的实现

    移动端适配的时候,通常是用rem作为长宽单位,因此,在不同的设备下,元素的实际宽高(px)是不一样的,如果是单张图片作为为背景图片的时候,最为方便,只要设置背景图片的属性background-size ...

  6. 20175204 张湲祯 2018-2019-2《Java程序设计》第八周学习总结

    20175204 张湲祯 2018-2019-2<Java程序设计>第八周学习总结 教材学习内容总结 -第十五章泛型与集合框架要点: 一.泛型 1.泛型(Generics)的主要目的是可以 ...

  7. 团队Github实战训练

    班级:软件工程1916|W 作业:团队Github实战训练 团队名称:SkyReach Github地址:Github地址 贡献比例表 队员学号 队员姓名 此次活动任务 贡献比例 221600106 ...

  8. 【转】Setting up SDL 2 on Visual Studio 2010 Ultimate

    from: Lazy Foo'Productions - Setting up SDL 2 on Visual Studio 2010 Ultimate 1)First thing you need ...

  9. 生成透视列之COALESCE

    临时表#t,数据如下: 实现如下数据: 方法一: declare @sql0 varchar(MAX)select @sql0 = isnull(@sql0 + '],[' , '') + Provi ...

  10. Python简单爬虫获取岗位招聘人数

    #encoding=utf-8 import selenium import selenium.webdriver import re import time # pip install seleni ...