[NOI2018]屠龙勇士
题解
考虑增量法。
假设我们已经做完了前k个条件,前面的模数连乘起来的结果为M,答案为X,当前的攻击力为x,龙的血量为a。
那么我们这一次的答案的表达形式是X+t*M的。
这一次需要满足的是x(X+t*M)≡a(%p).
只有t一个未知量,用exgcd就可以解了。
然后就是恶心的特判了。。。
代码
#include<iostream>
#include<cstdio>
#include<set>
#include<cmath>
#define N 100002
using namespace std;
typedef long long ll;
ll x,y,p[N],a[N],b[N],M,X,n,m,tag,t;
multiset<ll>s;
multiset<ll>::iterator it;
inline ll rd(){
ll x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline ll power(ll x,ll y,ll mod){
x=(x%mod+mod)%mod;y=(y%mod+mod)%mod;
ll ans=;
while(y){
if(y&)(ans+=x)%=mod;
(x<<=)%=mod;
y>>=;
}
return ans;
}
void exgcd(ll a,ll b){
if(!b){x=;y=;return;}
exgcd(b,a%b);
ll k=x;x=y;y=k-a/b*y;
}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void EXCRT(ll a,ll b,ll c){
ll aa=x*M,bb=c,cc=b-a*X;
ll g=gcd(aa,bb);
if(cc%g){tag=;return;}
if(c==){
bb/=g;
ll p=M;M*=bb;
X+=max(0ll,(ll)ceil((double)((double)b/a-X)/p))*p;
return;
}
aa/=g;bb/=g;cc/=g;
exgcd(aa,bb);
x=power(x,cc,bb);
ll p=M;M*=bb;
x=power(x,p,M);
X=(X+x)%M;
}
int main(){
// freopen("1.in","r",stdin);
t=rd();
while(t--){
n=rd();m=rd();tag=;s.clear();M=;X=;
for(int i=;i<=n;++i)a[i]=rd();
for(int i=;i<=n;++i)p[i]=rd();
for(int i=;i<=n;++i)b[i]=rd();
for(int i=;i<=m;++i)x=rd(),s.insert(x);
for(int i=;i<=n;++i){
it=s.upper_bound(a[i]);if(it!=s.begin())--it;
x=*it;s.erase(it);
EXCRT(x,a[i],p[i]);
if(tag)break;
s.insert(b[i]);
}
if(tag)printf("-1\n");
else cout<<X<<endl;
}
return ;
}
[NOI2018]屠龙勇士的更多相关文章
- BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set
题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...
- P4774 [NOI2018]屠龙勇士
P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) ...
- [洛谷P4774] [NOI2018]屠龙勇士
洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...
- BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt
BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt Description www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf 每次用 ...
- uoj396 [NOI2018]屠龙勇士
[NOI2018]屠龙勇士 描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 1∼n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 ai .同时每条巨龙拥有恢复能 ...
- 洛谷 P4774 [NOI2018] 屠龙勇士
链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...
- 洛谷P4774 [NOI2018]屠龙勇士 [扩欧,中国剩余定理]
传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...
- LOJ2721 [NOI2018] 屠龙勇士 【扩展中国剩余定理】
好久没写了,写一篇凑个数. 题目分析: 这题不难想,讲一下中国剩余定理怎么扩展. 考虑$$\left\{\begin{matrix}x \equiv a\pmod{b}\\ x \equiv c\pm ...
- Luogu P4774 / LOJ2721 【[NOI2018]屠龙勇士】
真是个简单坑题...++ 前置: exgcd,exCRT,STL-multiset 读完题不难发现,攻击每条龙用的剑都是可以确定的,可以用multiset求.攻击最少显然应该对于每一条龙都操作一次,即 ...
随机推荐
- leetcode-48.旋转图像
leetcode-48.旋转图像 point: 数组 题意 给定一个 n × n 的二维矩阵表示一个图像. 将图像顺时针旋转 90 度. 说明: 你必须在原地旋转图像,这意味着你需要直接修改输入的二维 ...
- Netty学习笔记(四) 简单的聊天室功能之服务端开发
前面三个章节,我们使用了Netty实现了DISCARD丢弃服务和回复以及自定义编码解码,这篇博客,我们要用Netty实现简单的聊天室功能. Ps: 突然想起来大学里面有个课程实训,给予UDP还是TCP ...
- git清空版本记录
在网上找的,记录下来自己使用 1.新增分支 git checkout --orphan latest_branch 2. 添加问题 git add -A 3. 提交 git commit -am &q ...
- hadoop1.0 和 Hadoop 2.0 的区别
1.Hadoop概述 在Google三篇大数据论文发表之后,Cloudera公司在这几篇论文的基础上,开发出了现在的Hadoop.但Hadoop开发出来也并非一帆风顺的,Hadoop1.0版本有诸多局 ...
- Cube的高级设置
分享来源地址:http://bigdata.51cto.com/art/201705/538648.htm Cube的高级设置 随着维度数目的增加,Cuboid 的数量会爆炸式地增长.为了缓解 Cub ...
- EntityFramework Code-First 简易教程(六)-------领域类配置之DataAnnotations
EF Code-First提供了一个可以用在领域类或其属性上的DataAnnotation特性集合,DataAnnotation特性会覆盖默认的EF约定. DataAnnotation存在于两个命名空 ...
- Thinkphp volist 多重循环原样输出数组key值的使用总结
最近因为项目的缘故,要使用到volist.在这个过程中,遇到了一些小问题,主要就是volist在循环输出多重数据的时候,如何输出key.网上查阅了不少资料,很失望的是,大多资料就是粘贴复制Thinkp ...
- Docker: 快速搭建LNMP网站平台
快速搭建LNMP网站平台 步骤: 1.自定义网络(这里建立一个自定义网络,名字叫 lnmp, 让LNMP网站的服务,都加入这个自定义网络)docker network create lnmp2.创建M ...
- mysql的分组
以下是根据老师的视屏写的总结,要自己实际操作以下. 首先老师一顿操作猛如虎,得到以下的表. 然后进行以下的操作: 发现筛选时报错了,老师的解释实说,分组是因为mysql不知道选择谁而出现报错,因为pa ...
- Linux上修改主机名
依次执行以下命令 hostnamectl set-hostname 你想设置的名字 hostname 你想设置的名字(和上面的名字保持一致) exit 然后重新连接就行了