题目描述

题解

考虑增量法。

假设我们已经做完了前k个条件,前面的模数连乘起来的结果为M,答案为X,当前的攻击力为x,龙的血量为a

那么我们这一次的答案的表达形式是X+t*M的。

这一次需要满足的是x(X+t*M)≡a(%p).

只有t一个未知量,用exgcd就可以解了。

然后就是恶心的特判了。。。

代码

#include<iostream>
#include<cstdio>
#include<set>
#include<cmath>
#define N 100002
using namespace std;
typedef long long ll;
ll x,y,p[N],a[N],b[N],M,X,n,m,tag,t;
multiset<ll>s;
multiset<ll>::iterator it;
inline ll rd(){
ll x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
inline ll power(ll x,ll y,ll mod){
x=(x%mod+mod)%mod;y=(y%mod+mod)%mod;
ll ans=;
while(y){
if(y&)(ans+=x)%=mod;
(x<<=)%=mod;
y>>=;
}
return ans;
}
void exgcd(ll a,ll b){
if(!b){x=;y=;return;}
exgcd(b,a%b);
ll k=x;x=y;y=k-a/b*y;
}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void EXCRT(ll a,ll b,ll c){
ll aa=x*M,bb=c,cc=b-a*X;
ll g=gcd(aa,bb);
if(cc%g){tag=;return;}
if(c==){
bb/=g;
ll p=M;M*=bb;
X+=max(0ll,(ll)ceil((double)((double)b/a-X)/p))*p;
return;
}
aa/=g;bb/=g;cc/=g;
exgcd(aa,bb);
x=power(x,cc,bb);
ll p=M;M*=bb;
x=power(x,p,M);
X=(X+x)%M;
}
int main(){
// freopen("1.in","r",stdin);
t=rd();
while(t--){
n=rd();m=rd();tag=;s.clear();M=;X=;
for(int i=;i<=n;++i)a[i]=rd();
for(int i=;i<=n;++i)p[i]=rd();
for(int i=;i<=n;++i)b[i]=rd();
for(int i=;i<=m;++i)x=rd(),s.insert(x);
for(int i=;i<=n;++i){
it=s.upper_bound(a[i]);if(it!=s.begin())--it;
x=*it;s.erase(it);
EXCRT(x,a[i],p[i]);
if(tag)break;
s.insert(b[i]);
}
if(tag)printf("-1\n");
else cout<<X<<endl;
}
return ;
}

[NOI2018]屠龙勇士的更多相关文章

  1. BZOJ5418[Noi2018]屠龙勇士——exgcd+扩展CRT+set

    题目链接: [Noi2018]屠龙勇士 题目大意:有$n$条龙和初始$m$个武器,每个武器有一个攻击力$t_{i}$,每条龙有一个初始血量$a_{i}$和一个回复值$p_{i}$(即只要血量为负数就一 ...

  2. P4774 [NOI2018]屠龙勇士

    P4774 [NOI2018]屠龙勇士 先平衡树跑出打每条龙的atk t[] 然后每条龙有\(xt \equiv a[i](\text{mod }p[i])\) 就是\(xt+kp[i]=a[i]\) ...

  3. [洛谷P4774] [NOI2018]屠龙勇士

    洛谷题目链接:[NOI2018]屠龙勇士 因为markdown复制过来有点炸格式,所以看题目请戳上面. 题解: 因为杀死一条龙的条件是在攻击\(x\)次,龙恢复\(y\)次血量\((y\in N^{* ...

  4. BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt

    BZOJ_5418_[Noi2018]屠龙勇士_exgcd+excrt Description www.lydsy.com/JudgeOnline/upload/noi2018day2.pdf 每次用 ...

  5. uoj396 [NOI2018]屠龙勇士

    [NOI2018]屠龙勇士 描述 小 D 最近在网上发现了一款小游戏.游戏的规则如下: 游戏的目标是按照编号 1∼n 顺序杀掉 n 条巨龙,每条巨龙拥有一个初始的生命值 ai .同时每条巨龙拥有恢复能 ...

  6. 洛谷 P4774 [NOI2018] 屠龙勇士

    链接:P4774 前言: 交了18遍最后发现是多组数据没清空/ll 题意: 其实就是个扩中. 分析过程: 首先发现根据题目描述的选择剑的方式,每条龙对应的剑都是固定的,有查询前驱,后继(在该数不存在前 ...

  7. 洛谷P4774 [NOI2018]屠龙勇士 [扩欧,中国剩余定理]

    传送门 思路 首先可以发现打每条龙的攻击值显然是可以提前算出来的,拿multiset模拟一下即可. 一般情况 可以搞出这么一些式子: \[ atk_i\times x=a_i(\text{mod}\ ...

  8. LOJ2721 [NOI2018] 屠龙勇士 【扩展中国剩余定理】

    好久没写了,写一篇凑个数. 题目分析: 这题不难想,讲一下中国剩余定理怎么扩展. 考虑$$\left\{\begin{matrix}x \equiv a\pmod{b}\\ x \equiv c\pm ...

  9. Luogu P4774 / LOJ2721 【[NOI2018]屠龙勇士】

    真是个简单坑题...++ 前置: exgcd,exCRT,STL-multiset 读完题不难发现,攻击每条龙用的剑都是可以确定的,可以用multiset求.攻击最少显然应该对于每一条龙都操作一次,即 ...

随机推荐

  1. 小学生四则运算(java编程)201571030135

    任务1源码在Github的仓库主页链接地址: https://github.com/zhanghh2018/Four-primary-school-pupils 需求分析: 作业总体效果:随机产生n道 ...

  2. 搭建MHA时 yum 安装perl模块提示 baseurl 错误

    今天在搭建MySQL MHA  安装MHA node所需的perl模块(DBD:mysql)时遇到了一个小的错误,如果思路不对的话,还是产生不少麻烦. 现梳理记录下来. 问题现象 执行的命令 yum ...

  3. Angualr学习笔记

    0.安装即环境初始化 下载node至windows,点击安装,所有环境变量直接OK: linux下载tar后,解压,在/etc/profile的path路径下增加node执行路径: export PA ...

  4. 通过百度地图API--获取全国地图的经纬度

    因为要做一个前端画图需要经纬度,一个个的查询过麻烦,最终弄出这个,以备后查! import threading , time import requests from decimal import D ...

  5. 【原】Java学习笔记007 - 流程控制

    package cn.temptation; public class Sample01 { public static void main(String[] args) { // for循环 // ...

  6. Mockito单元测试

    Mockito简介 Mockito是一个单元测试框架,需要Junit的支持.在我们的项目中,都存在相当多的依赖关系,当我们在测试某一个业务相关的接口或则方法时,绝大多数时候是没有办法或则很难去添加所有 ...

  7. hmac_检验客户端是否合法

    老师博客:http://www.cnblogs.com/Eva-J/articles/8244551.html#_label6 server端 import socket import os impo ...

  8. MySQL 5.7.13 的一个BUG

    mysql今天从5.6切到5.7,在测试环境中,日志是全部打印的,发现打了一个警告: Incorrect string value: '\xD6\xD0\xB9\xFA\xB1\xEA...' for ...

  9. Redis学习笔记(1)——Redis简介

    一.Redis是什么? Remote Dictionary Server(Redis) 是一个开源的使用ANSI C语言编写.遵守BSD协议.支持网络.可基于内存亦可持久化的日志型.Key-Value ...

  10. pc端移动端拖拽实现

    #div1 { width: 100px; height: 100px; background: red; position: absolute; } html <div id="di ...