洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur
P3119 [USACO15JAN]草鉴定Grass Cownoisseur
题目描述
In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X.
Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once).
As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.
约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。
贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。
输入输出格式
输入格式:
INPUT: (file grass.in)
The first line of input contains N and M, giving the number of fields and the number of one-way paths (1 <= N, M <= 100,000).
The following M lines each describe a one-way cow path. Each line contains two distinct field numbers X and Y, corresponding to a cow path from X to Y. The same cow path will never appear more than once.
输出格式:
OUTPUT: (file grass.out)
A single line indicating the maximum number of distinct fields Bessie
can visit along a route starting and ending at field 1, given that she can
follow at most one path along this route in the wrong direction.
输入输出样例
7 10 1 2 3 1 2 5 2 4 3 7 3 5 3 6 6 5 7 2 4 7
6
说明
SOLUTION NOTES:
Here is an ASCII drawing of the sample input:
v---3-->6
7 |\ |
^\ v \ |
| \ 1 | | | v | v 5
4<--2---^
Bessie can visit pastures 1, 2, 4, 7, 2, 5, 3, 1 by traveling
backwards on the path between 5 and 3. When she arrives at 3 she
cannot reach 6 without following another backwards path.
先tarjan缩点,然后建边。在这个时候我们需要建两条边,一条跑正向,一条反向,说白了就是建一条反向边。
然后在进行双向dfs,跑出从1点所能到达的点的最长链及能到达一点的最长链,更新到达当前点时所能更新出的最大值。
然后进行枚举每一条边,我们将其进行反向,看其反向后是否能连通整个图,若能,更新最大值。
我们更新结果的时候,枚举每一条可以反向的边,只有在这条边可以从1出来并且可以回到1时才可以使用。
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 210000
using namespace std;
int n,m,x,y,s,tot,tat,top,tim;
bool vis[N],vis1[N],vis2[N],vist1[N],vist2[N];
int xx[N],yy[N],in1[N],in2[N],head1[N],head2[N],dfn[N];
int low[N],sum[N],ans1[N],ans2[N],head[N],stack[N],belong[N];
queue<int>q;
int read()
{
,f=; char ch=getchar();
; ch=getchar();}
+ch-'; ch=getchar();}
return x*f;
}
struct Edge
{
int to,dis,next,from;
}edge[N],edge1[N],edge2[N];
int add(int x,int y)
{
tot++;
edge[tot].to=y;
edge[tot].next=head[x];
head[x]=tot;
}
int add1(int x,int y)
{
tat++;
edge1[tat].to=y;
edge1[tat].next=head1[x];
edge2[tat].to=x;
edge2[tat].next=head2[y];
head1[x]=head2[y]=tat;
}
int tarjan(int now)
{
dfn[now]=low[now]=++tim;
vis[now]=true; stack[++top]=now;
for(int i=head[now];i;i=edge[i].next)
{
int t=edge[i].to;
if(vis[t]) low[now]=min(low[now],dfn[t]);
else if(!dfn[t]) tarjan(t),low[now]=min(low[now],low[t]);
}
if(low[now]==dfn[now])
{
s++,belong[now]=s,sum[s]++;
for(;stack[top]!=now;top--)
belong[stack[top]]=s,vis[stack[top]]=false,sum[s]++;
vis[now]=false,top--;
}
}
int shink_point()
{
;i<=n;i++)
for(int j=head[i];j;j=edge[j].next)
if(belong[i]!=belong[edge[j].to])
add1(belong[i],belong[edge[j].to]);
}
int dfs1(int x)
{
vis1[x]=true;vist1[x]=true;
for(int i=head1[x];i;i=edge1[i].next)
{
int t=edge1[i].to;
if(ans1[t]<ans1[x]+sum[t])
{
ans1[t]=ans1[x]+sum[t];
dfs1(t);
}
}
vis1[x]=false;
}
int dfs2(int x)
{
vis2[x]=true;vist2[x]=true;
for(int i=head2[x];i;i=edge2[i].next)
{
int t=edge2[i].to;
if(ans2[t]<ans2[x]+sum[t])
{
ans2[t]=ans2[x]+sum[t];
dfs2(t);
}
}
vis2[x]=false;
}
int main()
{
n=read(),m=read();
;i<=m;i++)
xx[i]=read(),yy[i]=read(),add(xx[i],yy[i]);
;i<=n;i++)
if(!dfn[i]) tarjan(i);
shink_point();
ans1[belong[]]=ans2[belong[]]=sum[belong[]];
dfs1(belong[]);dfs2(belong[]);
*sum[belong[]];
;i<=m;i++)
{
x=belong[yy[i]],y=belong[xx[i]];
if(vist1[x]&&vist2[y])
answer=max(answer,ans1[x]+ans2[y]);
}
printf(]]);
;
}
拓扑排序:
这个题原来是打算用来练拓扑排序的,结果做了一天的拓扑排序发现不过样例、、、、
为什么会用拓扑排序??
因为我们用拓扑排序的话可以轻易地找到最长链。
怎么拓扑排序??
我们如果直接进行拓扑排序的话,我们会意识到一个问题:缩完点以后直接统计出来入度为零的点并非是我们所需要的点1,我们要跑最长链的话我们需要从1点开始跑,也就是说我们的起点必须是1,怎样做到这一点??我们要做到起点是一的话我们必须让1的入度为零,从一点开始更新与他相连的点。从新统计他们的入读,也就是说我们将这个可能出现环的图抽离成一颗树,这棵树的树根为1点。然后再进行拓扑排序,找出最长链。
最后在进行枚举边,进行更新、
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 210000
using namespace std;
int n,m,x,y,s,tot,tat,top,tim;
bool vis[N],vis1[N],vis2[N];
int xx[N],yy[N],in1[N],in2[N],head1[N],head2[N],dfn[N];
int low[N],sum[N],ans1[N],ans2[N],head[N],stack[N],belong[N];
int read()
{
,f=; char ch=getchar();
; ch=getchar();}
+ch-'; ch=getchar();}
return x*f;
}
struct Edge
{
int to,from,next;
}edge[N],edge1[N],edge2[N];
int add(int x,int y)
{
tot++;
edge[tot].to=y;
edge[tot].next=head[x];
head[x]=tot;
}
int add1(int x,int y)
{
tat++;
edge1[tat].to=y;
edge1[tat].next=head1[x];
edge2[tat].to=x;
edge2[tat].next=head2[y];
head1[x]=head2[y]=tat;
}
int tarjan(int now)
{
dfn[now]=low[now]=++tim;
vis[now]=true;stack[++top]=now;
for(int i=head[now];i;i=edge[i].next)
{
int t=edge[i].to;
if(vis[t]) low[now]=min(dfn[t],low[now]);
else if(!dfn[t]) tarjan(t),low[now]=min(low[t],low[now]);
}
if(low[now]==dfn[now])
{
s++,belong[now]=s,sum[s]++;
for(;stack[top]!=now;top--)
belong[stack[top]]=s,sum[s]++,vis[stack[top]]=false;
vis[now]=false;top--;
}
}
int shink_point()
{
;i<=m;i++)
for(int j=head[i];j;j=edge[j].next)
if(belong[i]!=belong[edge[j].to])
add1(belong[i],belong[edge[j].to]);
}
int dfs1(int s)
{
for(int i=head1[s];i;i=edge1[i].next)
{
int t=edge1[i].to;
if(!in1[t]) dfs1(t);
in1[t]++;
}
}
int dfs2(int s)
{
for(int i=head2[s];i;i=edge2[i].next)
{
int t=edge2[i].to;
if(!in2[t]) dfs2(t);
in2[t]++;
}
}
int tpsort(int *in,Edge *edge,int *head,bool *vis,int *ans)
{
queue<int>q;
q.push(belong[]);
while(!q.empty())
{
int x=q.front();q.pop();vis[x]=true;
for(int i=head[x];i;i=edge[i].next)
{
int t=edge[i].to;
in[t]--;
if(!in[t]) q.push(t);
ans[t]=max(ans[t],ans[x]+sum[t]);
}
}
}
int main()
{
n=read(),m=read();
;
;i<=m;i++)
xx[i]=read(),yy[i]=read(),add(xx[i],yy[i]);
;i<=n;i++)
if(!dfn[i]) tarjan(i);
shink_point();
dfs1(belong[]),dfs2(belong[]);
ans1[belong[]]=ans2[belong[]]=sum[belong[]];
tpsort(in1,edge1,head1,vis1,ans1);
tpsort(in2,edge2,head2,vis2,ans2);
answer=*sum[belong[]];
;i<=m;i++)
{
x=belong[yy[i]],y=belong[xx[i]];
if(vis1[x]&&vis2[y])
answer=max(answer,ans1[x]+ans2[y]);
}
printf(]]);
;
}
洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur的更多相关文章
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告
P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)
P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...
- 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur
http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur
屠龙宝刀点击就送 Tarjan缩点+拓扑排序 以后缩点后建图看n范围用vector ,或者直接用map+vector 结构体里数据要清空 代码: #include <cstring> #i ...
- 洛谷3119 [USACO15JAN]草鉴定Grass Cownoisseur
原题链接 显然一个强连通分量里所有草场都可以走到,所以先用\(tarjan\)找强连通并缩点. 对于缩点后的\(DAG\),先复制一张新图出来,然后对于原图中的每条边的终点向新图中该边对应的那条边的起 ...
- P3119 [USACO15JAN]草鉴定Grass Cownoisseur
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- 洛谷P3119 USACO15JAN 草鉴定
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路
https://www.luogu.org/problemnew/show/P3119 题意 有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点. 思路 (一)首先先缩点.自己在缩 ...
随机推荐
- IE8提速经验
给人写了个web程序,其中detail页要加载不少东西,所以耗时略长.因为bootstrap的原因,我要求用户使用chrome; 而chrome出了名的快,所以也基本没觉得什么. 后来用户因为别的原因 ...
- SqlServer2005使用top 100 PERCENT 无法排序的问题
由于公司提供的分页控件需要我使用top子句,而且有必要将查询到的记录全部取出,确发现不能排序,sql语句如下: SELECT TOP 15 * FROM( SELECT TOP (100) PERCE ...
- 给Sublime Text3 设置自定义快捷键
Preferrences -> Key Bindings-User打开用户自定义快捷键文件,添加以下代码,保存. [ { "keys": ["ctrl+shift+ ...
- SQLite – DISTINCT 关键字
SQLite – DISTINCT关键字 使用SQLite DISTINCT关键字与SELECT语句来消除所有重复的记录和获取唯一的记录. 可能存在一种情况,当你有多个表中重复的记录. 获取这些记录, ...
- Python100天打卡-Day10-图形用户界面和游戏开发
基于tkinter模块的GUIPython默认的GUI开发模块是tkinter(在Python 3以前的版本中名为Tkinter)使用tkinter来开发GUI应用需要以下5个步骤: 导入tkinte ...
- chrome 打开上次关闭的tab ctrl+shift+T
chrome 打开上次关闭的tab ctrl+shift+T
- 创建线程的三种方式_Callable和Runnable的区别
Java 提供了三种创建线程的方法 通过实现Runnable接口 通过继承Thread接口 通过Callable和Future创建线程 通过实现 Runnable 接口来创建线程 public cla ...
- Eaton Char-Lynn Motor : Performance Of Small Displacement Motors
The small-displacement supercharged motor replaces the large-displacement motor with the speed of li ...
- ios之coretext
API接口文档. https://developer.apple.com/library/mac/#documentation/Carbon/Reference/CoreText_Framework_ ...
- 前端开发中的 meta 整理
meta是html语言head区的一个辅助性标签.也许你认为这些代码可有可无.其实如果你能够用好meta标签,会给你带来意想不到的效果,meta标签的作用有:搜索引擎优化(SEO),定义页面使用语言, ...