Discription

Little town Nsk consists of n junctions connected by m bidirectional roads. Each road connects two distinct junctions and no two roads connect the same pair of junctions. It is possible to get from any junction to any other junction by these roads. The distance between two junctions is equal to the minimum possible number of roads on a path between them.

In order to improve the transportation system, the city council asks mayor to build one new road. The problem is that the mayor has just bought a wonderful new car and he really enjoys a ride from his home, located near junction s to work located near junction t. Thus, he wants to build a new road in such a way that the distance between these two junctions won't decrease.

You are assigned a task to compute the number of pairs of junctions that are not connected by the road, such that if the new road between these two junctions is built the distance between s and t won't decrease.

Input

The firt line of the input contains integers nms and t (2 ≤ n ≤ 1000, 1 ≤ m ≤ 1000, 1 ≤ s, t ≤ ns ≠ t) — the number of junctions and the number of roads in Nsk, as well as the indices of junctions where mayors home and work are located respectively. The i-th of the following m lines contains two integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi), meaning that this road connects junctions ui and vi directly. It is guaranteed that there is a path between any two junctions and no two roads connect the same pair of junctions.

Output

Print one integer — the number of pairs of junctions not connected by a direct road, such that building a road between these two junctions won't decrease the distance between junctions s and t.

Example

Input
5 4 1 5
1 2
2 3
3 4
4 5
Output
0
Input
5 4 3 5
1 2
2 3
3 4
4 5
Output
5
Input
5 6 1 5
1 2
1 3
1 4
4 5
3 5
2 5
Output
3

两遍dfs之后暴力判断即可。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=1005;
bool a[maxn][maxn],v[maxn];
int n,m,S,T,d[maxn],g[maxn],ans;
int to[maxn*2],ne[maxn*2],hd[maxn]; inline void BFS(){
queue<int> q; int x;
q.push(S),v[S]=1;
while(!q.empty()){
x=q.front(),q.pop();
for(int i=hd[x];i;i=ne[i]) if(!v[to[i]]){
v[to[i]]=1,d[to[i]]=d[x]+1;
q.push(to[i]);
}
} memset(v,0,sizeof(v));
q.push(T),v[T]=1;
while(!q.empty()){
x=q.front(),q.pop();
for(int i=hd[x];i;i=ne[i]) if(!v[to[i]]){
v[to[i]]=1,g[to[i]]=g[x]+1;
q.push(to[i]);
}
}
} int main(){
scanf("%d%d%d%d",&n,&m,&S,&T);
int uu,vv;
for(int i=1;i<=m;i++){
scanf("%d%d",&uu,&vv),a[uu][vv]=a[vv][uu]=1;
to[i]=vv,ne[i]=hd[uu],hd[uu]=i;
to[i+m]=uu,ne[i+m]=hd[vv],hd[vv]=i+m;
} BFS(); for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++) if(!a[i][j])
if(d[i]+g[j]>=d[T]-1&&d[j]+g[i]>=d[T]-1) ans++; printf("%d\n",ans);
return 0;
}

  

 

Codeforces 954 D Fight Against Traffic的更多相关文章

  1. Codeforces 954D Fight Against Traffic(BFS 最短路)

    题目链接:Fight Against Traffic 题意:有n个点个m条双向边,现在给出两个点S和T并要增加一条边,问增加一条边且S和T之间距离不变短的情况有几种? 题解:首先dfs求一下S到其他点 ...

  2. 最短路 CF954D Fight Against Traffic

    CF954D Fight Against Traffic 题意描述: 给你一张无向图,一共有n个点(2 <= n <= 1000),由m条边连接起来(1 <= m <= 100 ...

  3. Codeforces 954 E. Water Taps

    http://codeforces.com/problemset/problem/954/E 式子变成Σ xi*(ti-T)=0 sum0表示>=T的ai*ti之和 sum1表示<T的ai ...

  4. Codeforces 954 G. Castle Defense

    http://codeforces.com/problemset/problem/954/G 二分答案 检验的时候,从前往后枚举,如果发现某个位置的防御力<二分的值,那么新加的位置肯定是越靠后越 ...

  5. Fight Against Traffic -简单dijkstra算法使用

    题目链接 http://codeforces.com/contest/954/problem/D 题目大意 n m s t 分别为点的个数, 边的个数,以及两个特殊的点 要求s与t间的距离在新增一条边 ...

  6. CodeForcesEducationalRound40-D Fight Against Traffic 最短路

    题目链接:http://codeforces.com/contest/954/problem/D 题意 给出n个顶点,m条边,一个起点编号s,一个终点编号t 现准备在这n个顶点中多加一条边,使得st之 ...

  7. codeforces 487A A. Fight the Monster(二分)

    题目链接: A. Fight the Monster time limit per test 1 second memory limit per test 256 megabytes input st ...

  8. [CodeForces954D]Fight Against Traffic(最短路)

    Description 题目链接 Solution 从起点和终点分别做一次最短路并记录结果 枚举每一条可能的边判断 Code #include <cstdio> #include < ...

  9. Codeforces 954 dijsktra 离散化矩阵快速幂DP 前缀和二分check

    A B C D 给你一个联通图 给定S,T 要求你加一条边使得ST的最短距离不会减少 问你有多少种方法 因为N<=1000 所以N^2枚举边数 迪杰斯特拉两次 求出Sdis 和 Tdis 如果d ...

随机推荐

  1. postgres的强制类型转换与时间函数

    一.类型转换postgres的类型转换:通常::用来做类型转换,timestamp到date用的比较多select  now()::dateselect  now()::varchar 示例1:日期的 ...

  2. Big Data Mindmap

  3. 在proe模型文件里面存储用户数据

    存储外部数据 author:visualsan 2014.2 上海 1.简介 利用外部数据存储外部接口,可以在模型文件里面尺寸用户自定义数据.在模型保存时数据自动存储,在模型载入时数据自动载入.外部数 ...

  4. du - 报告磁盘空间使用情况

    总览 du [options] [file...] POSIX 选项: [-askx] GNU 选项 (最短格式): [-abcDhHklLmsSxX] [--block-size=size] [-- ...

  5. 转行做web前端,该如何进行短期快速自学,达到高新就业水平

    就目前来说,毕业生如果想毕业就找到高薪的工作,互联网成为了第一个选择,在所有的职业中,不靠任何关系,全凭自己的能力就业,就是程序开发,而web前端开发是目最很热门的行业,在未来五年之内,web前端开发 ...

  6. 产生多种anchor的代码讲解!很好!

    http://blog.csdn.net/xzzppp/article/details/52317863 源代码:https://github.com/rbgirshick/py-faster-rcn ...

  7. docker-compose nginx

    docker-compose nginx example source code docker-compose nginx balancing

  8. Go:类型断言

    一.基本介绍 类型断言:由于接口是一般类型,不知道具体类型,如果要转成具体类型,就需要使用类型断言. 如果希望将一个空接口类型重新转换成对应的类型,那么需要使用类型断言,能转换成功是因为这个空接口原先 ...

  9. Python机器学习及实践+从零开始通往Kaggle竞赛之路

    内容简介 本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下最流行的机器学习.数 ...

  10. SpringBoot log4j2 异常

    log4j 配置 <dependency> <groupId>org.springframework.boot</groupId> <artifactId&g ...