bzoj 2756 [SCOI2012]奇怪的游戏【二分+最大流】
达成成就:为二分调参
!:多次memset的话要把数组大小开严格一点,否则会T
看到网格图,首先黑白染色。
注意到每次操作都是在一个黑格子和一个白格子上进行的,也就是说,最后黑格子数字和白格子数字和的差是不变的。
对于n*m%2==0的情况:
- 注意到在这种情况下黑格子和白格子一样多,也就是当黑格子数字和和白格子数字和不相等时,一定是不合法状态,反之一定合法。
- 那么二分最小的最终数字
对于于n*m%2==1情况:
- 注意到在这种情况下两种格子的数量差1,也就是说格子个数较多的一种格子的数字和与另一种格子的数字和之差就是最终数字。不合法状态之一即为数字之差比初始状态中数字最大的格子中的数字小。
- 那么判断是否合法
判断方法:
- 建立流量网络,s连向所有黑格子,所有白格子连向t,流量均为当前格子的值与最终数字之差,所有黑格子向与他相邻的白格子连流量为inf的边(黑白格子反过来也可以)
- 跑最大流,看是否全部满流,即可以通过一些方案使所有格子达到最终数字
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const long long N=55,P=25005,inf=1e11;
long long T,n,m,a[N][N],col[N][N],sum,le[P],cnt,h[P],s,t,mn,c0,c1,s0,s1;
struct qwe
{
long long ne,to,va;
}e[P<<1];
long long read()
{
long long r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(long long u,long long v,long long w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(long long u,long long v,long long w)
{// cout<<u<<" "<<v<<" "<<w<<endl;
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
memset(le,0,sizeof(le));
queue<long long>q;
le[s]=1;
q.push(s);
while(!q.empty())
{
long long u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
long long dfs(long long u,long long f)
{
if(u==t||!f)
return f;
long long us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
long long t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
long long dinic()
{
long long re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
bool ok(long long c)
{
memset(h,0,sizeof(h));
long long sum=0ll;
cnt=1;s=0,t=n*m+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
long long x=(i-1)*m+j;
if(col[i][j])
{
ins(s,x,c-a[i][j]),sum+=c-a[i][j];
if(i!=1)
ins(x,(i-2)*m+j,inf);
if(i!=n)
ins(x,i*m+j,inf);
if(j!=1)
ins(x,(i-1)*m+j-1,inf);
if(j!=m)
ins(x,(i-1)*m+j+1,inf);
}
else
ins(x,t,c-a[i][j]);
}
return dinic()==sum;
}
int main()
{
T=read();
while(T--)
{
c0=c1=s0=s1=mn=0;
n=read(),m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
a[i][j]=read();
col[i][j]=(i+j)&1;
mn=max(mn,a[i][j]);
if(col[i][j])
s1+=a[i][j],c1++;
else
s0+=a[i][j],c0++;
}
if(c0!=c1)
{
long long x=(s0-s1)/1;
if(x>mn&&ok(x))
printf("%lld\n",x*c1-s1);
else
puts("-1");
}
else
{
if(s0!=s1)
{
puts("-1");
continue;
}
long long l=mn,r=inf;
while(l<=r)
{
long long mid=(l+r)>>1;
if(ok(mid))
r=mid-1;
else
l=mid+1;
}
printf("%lld\n",l*c1-s1);
}
}
return 0;
}
bzoj 2756 [SCOI2012]奇怪的游戏【二分+最大流】的更多相关文章
- bzoj 2756 [SCOI2012]奇怪的游戏 二分+网络流
2756:[SCOI2012]奇怪的游戏 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 4926 Solved: 1362[Submit][Stat ...
- BZOJ.2756.[SCOI2012]奇怪的游戏(二分 黑白染色 最大流ISAP)
题目链接 \(Description\) \(Solution\) 这种题当然要黑白染色.. 两种颜色的格子数可能相同,也可能差1.记\(n1/n2\)为黑/白格子数,\(s1/s2\)为黑/白格子权 ...
- BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]
2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 3352 Solved: 919[Submit][Stat ...
- BZOJ 2756: [SCOI2012]奇怪的游戏 网络流/二分
2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 1594 Solved: 396[Submit][Stat ...
- BZOJ 2756 SCOI2012 奇怪的游戏 最大流
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2756 Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N ...
- bzoj 2756: [SCOI2012]奇怪的游戏
Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1. 现在 B ...
- 【BZOJ 2756】[SCOI2012]奇怪的游戏 二分+最大流
这道题提醒我,要有将棋盘黑白染色的意识,尤其是看到相邻格子这样的条件的时候,然后就是要用到与其有关的性质与特点以体现其作用,这道题就是用到了黑格子与白格子之间的关系进行的,其出发点是每次一定会给一个黑 ...
- P5038 [SCOI2012]奇怪的游戏 二分+网络流
$ \color{#0066ff}{ 题目描述 }$ Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 \(N \times M\) 的棋盘上玩,每个格子有一个数.每次\(Blinker\)会 ...
- 洛谷$P5038\ [SCOI2012]$奇怪的游戏 二分+网络流
正解:二分+网络流 解题报告: 传送门$QwQ$ 这种什么,"同时增加",长得就挺网络流的$QwQ$?然后看到问至少加多少次,于是考虑加个二分呗?于是就大体确定了做题方向,用的网络 ...
随机推荐
- 显示倒计时的Button按钮
package com.pingyijinren.helloworld.activity; import android.os.CountDownTimer; import android.suppo ...
- poj2767,单向连通图判定,缩点+重新建图+新图DFS
/*该题被博客里标记为中等题,30分钟内1A,掌握了算法就简单了,单向连通图判定,单向连通图缩点 后必然唯一存在出度为0的点和入度为0的点,并且从入度为0的点出发,可以遍历所有点后到达出度为0点 (一 ...
- python学习之-- 协程
协程(coroutine)也叫:微线程,是一种用户态的轻量级线程,就是在单线程下实现并发的效果.优点:1:无需线程上下文切换的开销.(就是函数之间来回切换)2:无需原子操作锁定及同步的开销.(如改一个 ...
- 毕业bg--hdu1881(01背包)
http://acm.hdu.edu.cn/showproblem.php?pid=1881 01 背包 先按发起人离开的时间从小到大排序 然后再套01背包的模板 #include <iost ...
- 一个Tomcat最多支持多少用户的并发?
,也就是说同时支持 另外,在 Java 中每开启一个线程需要耗用 1MB 的 JVM 内存空间用于作为线程栈之用.Tomcat的最大并发数是可以配置的,实际运用中,最大并发数与硬件性能和CPU数量都有 ...
- Java子类重写父类方法注意问题收集(转)
子类不能重写父类的静态方法,私有方法.即使你看到子类中存在貌似是重写的父类的静态方法或者私有方法,编译是没有问题的,但那其实是你重新又定义的方法,不是重写.具体有关重写父类方法的规则如下: 重写规则之 ...
- Meteor ToDo App实例
在本章中,我们将创建一个简单的待办事项应用程序. 第1步 - 创建应用程序 打开命令提示符,运行以下命令 - C:\Users\Administrator\Desktop>meteor crea ...
- hdu 5087 Revenge of LIS II ( LIS ,第二长子序列)
链接:hdu 5087 题意:求第二大的最长升序子序列 分析:这里的第二大指的是,全部的递增子序列的长度(包含相等的), 从大到小排序后.排在第二的长度 cid=546" style=&qu ...
- hdu5399Too Simple
//给m个函数 //其相应是自变量x属于{1,2,...n} //f(x)属于{1,2...3} //给出当中一些函数,问有多少种不同的函数集合使得 //1<=i<=n f1(f2(f3. ...
- hdu1576 mod 运算的逆元
Problem Description 要求(A/B)%9973,但因为A非常大,我们仅仅给出n(n=A%9973)(我们给定的A必能被B整除.且gcd(B,9973) = 1). Input 数 ...