本系列笔记内容参考来源为李航《统计学习方法》

k近邻是一种基本分类与回归方法,书中只讨论分类情况。输入为实例的特征向量,输出为实例的类别。k值的选择距离度量分类决策规则是k近邻法的三个基本要素。

k近邻算法

给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类。

k近邻法没有显示的学习过程。

k近邻模型

距离度量

一般为欧式距离,Lp距离、Minkowski距离等

由不同的距离度量所确定的最近邻点是不同的。

式3.5也称为切比雪夫距离。

夹角余弦

几何中用来衡量两个向量方向的相似度。

k值的选择

k值小时,k近邻模型更复杂,容易发生过拟合;k值大时,模型更简单。k值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的k。

分类决策规则

常用的分类决策规则是多数表决,对应与经验风险最小化。

k近邻法的实现:kd树

构造kd树算法如下:

搜索kd树即回溯法:

《统计学习方法》笔记三 k近邻法的更多相关文章

  1. 统计学习笔记之k近邻法

    1.kNN算法的思想:给定一个训练数据集,对新的输入实例,在训练集中找到与该实例最近邻的k个实例,这k个实例的多数属于某类,就把输入实例分为这个类. 2.算法 (1)根据给定的距离度量,在训练集T中找 ...

  2. 统计学习方法与Python实现(二)——k近邻法

    统计学习方法与Python实现(二)——k近邻法 iwehdio的博客园:https://www.cnblogs.com/iwehdio/ 1.定义 k近邻法假设给定一个训练数据集,其中的实例类别已定 ...

  3. 《统计学习方法(李航)》讲义 第03章 k近邻法

    k 近邻法(k-nearest neighbor,k-NN) 是一种基本分类与回归方法.本书只讨论分类问题中的k近邻法.k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类 ...

  4. 学习笔记——k近邻法

    对新的输入实例,在训练数据集中找到与该实例最邻近的\(k\)个实例,这\(k\)个实例的多数属于某个类,就把该输入实例分给这个类. \(k\) 近邻法(\(k\)-nearest neighbor, ...

  5. 统计学习方法笔记 -- KNN

    K近邻法(K-nearest neighbor,k-NN),这里只讨论基于knn的分类问题,1968年由Cover和Hart提出,属于判别模型 K近邻法不具有显式的学习过程,算法比较简单,每次分类都是 ...

  6. k近邻法(kNN)

    <统计学习方法>(第二版)第3章 3 分类问题中的k近邻法 k近邻法不具有显式的学习过程. 3.1 算法(k近邻法) 根据给定的距离度量,在训练集\(T\)中找出与\(x\)最邻近的\(k ...

  7. K近邻法(KNN)原理小结

    K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...

  8. scikit-learn K近邻法类库使用小结

    在K近邻法(KNN)原理小结这篇文章,我们讨论了KNN的原理和优缺点,这里我们就从实践出发,对scikit-learn 中KNN相关的类库使用做一个小结.主要关注于类库调参时的一个经验总结. 1. s ...

  9. 机器学习PR:k近邻法分类

    k近邻法是一种基本分类与回归方法.本章只讨论k近邻分类,回归方法将在随后专题中进行. 它可以进行多类分类,分类时根据在样本集合中其k个最近邻点的类别,通过多数表决等方式进行预测,因此不具有显式的学习过 ...

随机推荐

  1. JAVA WEB学习笔记(二):Tomcat服务器的安装及配置

    一.Tomcat的下载及安装. 前往Tomcat官网下载安装包或者免安装压缩包.链接http://tomcat.apache.org/ 这里,我选择的是Tomcat8.0,而不是最新的Tomcat9. ...

  2. MongoDB Spark Connector

    [在文件/usr/bin/yum./usr/libexec/urlgrabber-ext-down最上面的一行改为#!/usr/bin/python2.7] yum install git Note: ...

  3. CH 5105 Cookies(贪心+DP)

    \(CH 5105 Cookies\) \(solution:\) 真是好题一道!这道题我想了很久很久,就得这一题可以直接完全贪心,可惜最后还是失败了,但是对贪心的深入思考也换来了一个最优解方案.然后 ...

  4. js replace()实现全部替换

    var r= "1\n2\n3\n"; //将字母\n替换成分号 alert(r.replace("\n",";")); 结果:1;2\n3 ...

  5. xalion三层与Web开发帖子一览表 good

    使用http.sys,让delphi 的多层服务飞起来(Delphi借用http.sys充当http服务器,也就可以发送返回JSON等信息,当然浏览器也可以使用)http://www.cnblogs. ...

  6. JavaScript SHA-1

    1. [文件] webtoolkit.sha1.js ~ 4KB     /****  Secure Hash Algorithm (SHA1)*  http://www.huiyi8.com/css ...

  7. codeforces B. Shower Line 解题报告

    题目链接:http://codeforces.com/contest/431/problem/B 题目意思:给出5 * 5 的矩阵.从这个矩阵中选出合理的安排次序,使得happiness之和最大.当第 ...

  8. python二维数组初始化

    >>> a=[[0]*3 for i in range(3)]>>> a[[0, 0, 0], [0, 0, 0], [0, 0, 0]]>>> ...

  9. 【USACO】 Max Flow

    [题目链接] 点击打开链接 [算法] LCA + 树上差分 [代码] #include<bits/stdc++.h> using namespace std; int i,x,y,N,K, ...

  10. PostgreSQL新手教程

    自从MySQL被Oracle收购以后,PostgreSQL逐渐成为开源关系型数据库的首选. 本文介绍PostgreSQL的安装和基本用法,供初次使用者上手.以下内容基于Debian操作系统,其他操作系 ...