Luogu3674小清新人渣的本愿
https://zybuluo.com/ysner/note/1109536
题面
给你一个序列a,长度为n,有m次操作,每次询问一个区间
是否可以选出两个数它们的差为x
是否可以选出两个数它们的和为x
是否可以选出两个数它们的乘积为x 。
选出的这两个数可以是同一个位置的数对于100%的数据,n,m,c <= 100000
知识迁移
\(bitset\)的原理是将一大堆值为\(0/1\)的数压成一个数。
通过\(i>>x\)等操作,我们可以快速访问\(i\)数组右移\(x\)位后的状态(即只剩右数\(n-x\)个值。
\(bitset\)数组可以当作一个数来看待并进行>>,<<,&,^等操作(详见高斯消元总结)。
还有一些\(STL\)函数。
- b.any():b中是否存在置为1的二进制位?
- b.none():b中不存在置为1的二进制位吗?
- b.count():b中置为1的二进制位的个数
- b.size():b中二进制位的个数
- b[pos]:访问b中在pos处的二进制位
- b.test(pos):b中在pos处的二进制位是否为1?
- b.set():把b中所有二进制位都置为1
- b.set(pos):把b中在pos处的二进制位置为1
- b.reset():把b中所有二进制位都置为0
- b.reset(pos):把b中在pos处的二进制位置为0
- b.flip():把b中所有二进制位逐位取反
- b.flip(pos):把b中在pos处的二进制位取反
解析
这题显然只能用莫队搞啊。
操作三枚枚因数就成,\(O(m\sqrt{n})\)稳稳的。
操作一二好像会到\(O(n^2)\)?很耸?
发现我们询问时只要问存在性,即只有\(0/1\)两种状态,于是可以\(bitset\)优化一波,\(O(\frac{n^2}{64}\))强行卡过此题。
// luogu-judger-enable-o2
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<bitset>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=1e5+10000;
bitset<N>S1,S2;
bool ans[N];
int n,m,blk,num[N],a[N];
struct Que
{
int id,op,l,r,x,bl;
bool operator < (const Que &o){return (bl<o.bl)||(bl==o.bl&&r<o.r);}
}q[N];
il int gi()
{
re int x=0,t=1;
re char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void add(re int x){if(!num[x]++) S1[x]=S2[100000-x]=1;}
il void del(re int x){if(!--num[x]) S1[x]=S2[100000-x]=0;}
int main()
{
n=gi();m=gi();blk=sqrt(n);
fp(i,1,n) a[i]=gi();
fp(i,1,m)
{
re int op=gi(),l=gi(),r=gi(),x=gi();
q[i]=(Que){i,op,l,r,x,l/blk};
}
sort(q+1,q+1+m);
re int L=1,R=0;
fp(i,1,m)
{
while(L>q[i].l) add(a[--L]);
while(R<q[i].r) add(a[++R]);
while(L<q[i].l) del(a[L++]);
while(R>q[i].r) del(a[R--]);
if(q[i].op==1) ans[q[i].id]=(S1&(S1>>q[i].x)).any();
if(q[i].op==2) ans[q[i].id]=(S1&(S2>>(100000-q[i].x))).any();
if(q[i].op==3)
fp(k,1,sqrt(q[i].x))
if(q[i].x%k==0)
if(S1[k]&S1[q[i].x/k]) {ans[q[i].id]=1;break;}
}
fp(i,1,m) ans[i]?puts("hana"):puts("bi");
return 0;
}
Luogu3674小清新人渣的本愿的更多相关文章
- [Luogu3674]小清新人渣的本愿
luogu 题意 给你一个序列a,长度为n,有m次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...
- luogu3674 小清新人渣的本愿 (bitset+莫队)
对于加减,用bitset维护当前每个数有没有 对于乘,暴力枚举约数 然后莫队 复杂度$O(m(\sqrt{n}+\frac{c}{64}))$ #include<bits/stdc++.h> ...
- LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田
题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...
- P3674 小清新人渣的本愿
P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...
- 【洛谷3674】小清新人渣的本愿(莫队,bitset)
[洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...
- 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]
传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...
- [Luogu 3674]小清新人渣的本愿
Description 题库链接 给你一个序列 \(A\) ,长度为 \(n\) ,有 \(m\) 次操作,每次询问一个区间是否可以 选出两个数它们的差为 \(x\) : 选出两个数它们的和为 \(x ...
- 【题解】Luogu P3674 小清新人渣的本愿
原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...
- 洛谷P3674 小清新人渣的本愿
题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...
随机推荐
- 05Servlet example
dgdfgdfggggggg Servlet 表单数据 在客户端,GET通过URL提交数据,数据在URL中可见:POST把数据放在form的数据体内提交.GET提交的数据最多只有1024字节:POST ...
- Java运算符法则
JAVA运算符法则 运算符是一种特殊的符号,用于表示数据的运算,赋值和比较等: 算术运算符 正号+,负号-,加+,减-,乘*,除/,余或取模%,自增++,自减--,字符串相加+ 正号负号运算符代表运算 ...
- BZOJ5314: [Jsoi2018]潜入行动 (树形DP)
题意:一棵树选择恰好k个结点放置监听器 每个监听器只能监听相邻的节点 问能使得所有节点被监听的种类数 题解:反正就是很well-known的树形DP了 至于时间复杂度为什么是nk 不会不学 很好想到四 ...
- 攻破javascript面试的完美指南【译】
攻破javascript面试的完美指南(开发者视角) 0. 前言 本文适合有一定js基础的前端开发人员阅读.原文是我google时无意发现的, 被一些知识点清晰的解析所打动, 决定翻译并记录下来.这个 ...
- 20.IO流部分笔记
20.IO流部分笔记 2018/09/06 1.IO流 1.1 创建字节输出流对象,如果没有就自动创建一个 FileOutputStram fos = new FileOutputStram(&qu ...
- Oracle创建用户、角色、授权、建表空间
oracle数据库的权限系统分为系统权限与对象权限.系统权限( database system privilege )可以让用户执行特定的命令集.例如,create table权限允许用户创建表,gr ...
- Nginx配置 隐藏入口文件index.php
Nginx配置文件里放入这段代码 server { location / { index index.php index.html index.htm l.php; autoindex on; if ...
- 一:安装centos 7最小编程环境 xfce桌面
1, u盘制作安装盘------------------------------------------------------安装时, table或者e进入编辑选项 如果不知道你的u盘的盘符 ...
- Python单例模式的实现方式
一.单例类 单例模式(Singleton Pattern)是 Python 中最简单的设计模式之一.这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式. 这种模式涉及到一个单一的类,该类 ...
- (一)U-Boot启动过程--详细版的完全分析
博客地址:http://blog.csdn.net/hare_lee/article/details/6916325