【题目分析】

FFT,构造数列进行卷积,挺裸的一道题目诶。

还是写起来并不顺手,再练。

【代码】

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i) #define maxn 500005 const double pi=acos(-1.0);
const double mypi=3.1415926589793238462643383279502; struct Complex{
double x,y;
Complex operator + (Complex & a) const {Complex b; return b.x=x+a.x,b.y=y+a.y,b;}
Complex operator - (Complex & a) const {Complex b; return b.x=x-a.x,b.y=y-a.y,b;}
Complex operator * (Complex & a) const {Complex b; return b.x=x*a.x-y*a.y,b.y=x*a.y+y*a.x,b;}
}a[maxn],b[maxn],c[maxn]; int n,len,m,rev[maxn],top; void FFT(Complex * x,int n,int flag)
{
F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]);
for (int m=2;m<=n;m<<=1)
{
Complex wn; wn.x=cos(2.0*pi/m*flag); wn.y=sin(2.0*pi/m*flag);
int mid=m>>1;
for (int i=0;i<n;i+=m)
{
Complex w; w.x=1.0; w.y=0;
for (int j=0;j<mid;++j)
{
Complex u=x[i+j],v=x[i+j+mid]*w;
x[i+j]=u+v; x[i+j+mid]=u-v;
w=w*wn;
}
}
}
} int main()
{
scanf("%d",&n); top=n;
F(i,0,n-1) scanf("%lf",&a[i].x);
F(i,0,2*n-2)
{
if (i==n-1) continue;
b[i].x=1.0/(n-1-i)/(n-1-i);
// printf("%d %d %.6f\n",i,(n-1-i),1.0/(n-1-i)/(n-1-i));
if (i<n-1) b[i].x*=-1;
}
// F(i,0,2*n-2) printf("%f\n",b[i].x);
m=1; n=2*n-1;
while (m<=n) m<<=1,len++; n=m;
F(i,0,n-1)
{
int t=i,ret=0;
F(j,1,len) ret<<=1,ret|=t&1,t>>=1;
rev[i]=ret;
}
FFT(a,n,1); FFT(b,n,1);
F(i,0,n) c[i]=a[i]*b[i];
FFT(c,n,-1);
F(i,top-1,2*top-2) printf("%.3f\n",c[i].x/n);
}

  

BZOJ 3527 [Zjoi2014]力 ——FFT的更多相关文章

  1. bzoj 3527 [Zjoi2014]力——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 把 q[ i ] 除掉.设 g[ i ] = i^2 ,有一半的式子就变成卷积了:另一 ...

  2. bzoj 3527 [Zjoi2014] 力 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 看了看TJ才推出来式子,还是不够熟练啊: TJ:https://blog.csdn.n ...

  3. BZOJ 3527: [Zjoi2014]力(FFT)

    我们看一下这个函数,很容易就把他化为 E=sigma(aj/(i-j)/(i-j))(i>j)-sigma(aj/(i-j)/(i-j))(j>i) 把它拆成两半,可以发现分子与分母下标相 ...

  4. 【BZOJ】3527: [Zjoi2014]力 FFT

    [参考]「ZJOI2014」力 - FFT by menci [算法]FFT处理卷积 [题解]将式子代入后,化为Ej=Aj-Bj. Aj=Σqi*[1/(i-j)^2],i=1~j-1. 令f(i)= ...

  5. ●BZOJ 3527 [Zjoi2014]力

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3527 题解: FFT求卷积. $$\begin{aligned}E_i&=\frac ...

  6. BZOJ 3527: [ZJOI2014]力(FFT)

    BZOJ 3527: [ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \[F_j=\sum \limits _ {i < j} \fra ...

  7. 数学(FFT):BZOJ 3527 [Zjoi2014]力

    题目在这里:http://wenku.baidu.com/link?url=X4j8NM14MMYo8Q7uPE7-7GjO2_TXnMFA2azEbBh4pDf7HCENM3-hPEl4mzoe2w ...

  8. bzoj 3527: [Zjoi2014]力 快速傅里叶变换 FFT

    题目大意: 给出n个数\(q_i\)定义 \[f_i = \sum_{i<j}{\frac{q_iq_j}{(i-j)^2}} - \sum_{i>j}\frac{q_iq_j}{(i-j ...

  9. bzoj 3527: [Zjoi2014]力【FFT】

    大力推公式,目标是转成卷积形式:\( C_i=\sum_{j=1}^{i}a_jb_{i-j} \) 首先下标从0开始存,n-- \[ F_i=\frac{\sum_{j<i}\frac{q_j ...

随机推荐

  1. 如何让局域网其他计算机访问您的Mysql???

    一.配置Mysql:(修改mysql数据库中user表) mysql -u root -p // root用户登录mysql>use mysql; // 选择mysql数据库 mysql> ...

  2. SVN中trunk,branches,tags用法详解【转】

    Subversion有一个很标准的目录结构,是这样的.比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是 svn://proj/|+-trunk+-branches+-ta ...

  3. WPF中引入外部资源

    有时候需要在WPF中引入外部资源,比如图片.音频.视频等,所以这个常见的技能还是需要GET到. 第一步:在VS中创建一个WPF窗口程序 第二步:从外部引入资源,这里以引入图片资源为例 1)新建Reso ...

  4. python基础一 day9 函数升阶(3)

    局部命名空间一般之间是独立,局部命名空间是调用函数时生成的函数的名字指向它所在的地址局部不会对全局产生影响,除非加global.# def max(a,b):# return a if a>b ...

  5. 使用jQuery 发送Ajax

    jQuery AJAX 方法 AJAX 是一种与服务器交换数据的技术,可以在不重新载入整个页面的情况下更新网页的一部分. 下面的表格列出了所有的 jQuery AJAX 方法: 构建页面:jqlogi ...

  6. -bash: xx: command not found 在有yum源情况下处理

    -bash: xx: command not found 在有yum源情况下处理 yum provides "*/xx"  ###"xx"代表某命令 或者 yu ...

  7. C语言运算符_03

    ·运算符的优先级:C语言中,运算符的优先级共分为15级.1级最高,15级最低.在表达式中,优先级较高的先于优先级较低的进行运算.而在同一个运算量两侧的运算符优先级相同时,则按运算符的结合性所规定的结合 ...

  8. ViewController的lifecycle和autolayout

  9. day03变量补充和数据类型

    1.变量的内存管理机制 引用计数:存放值的内存地址绑定的变量个数 垃圾:引用计数为0的内存地址 引用计数增加: age = 18 x = age 引用计数减少: ①age = 19 ②del x 值的 ...

  10. 算法学习记录-图——最小生成树之prim算法

    一个连通图的生成树是一个极小的连通子图,它包含图中全部的顶点(n个顶点),但只有n-1条边. 最小生成树:构造连通网的最小代价(最小权值)生成树. prim算法在严蔚敏树上有解释,但是都是数学语言,很 ...