Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N.

There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi, Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.

Please help Hzz calculate the expected dice throwing times to finish the game.

InputThere are multiple test cases. 
Each test case contains several lines. 
The first line contains two integers N(1≤N≤100000) and M(0≤M≤1000). 
Then M lines follow, each line contains two integers Xi,Yi(1≤Xi<Yi≤N).   
The input end with N=0, M=0. 
OutputFor each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point. 
Sample Input

2 0
8 3
2 4
4 5
7 8
0 0

Sample Output

1.1667
2.3441 本题题意:数轴上有N+1个点(编号0~N),一个人玩游戏,从0出发,当到达N或大于N的点则游戏结束。
每次行动掷骰子一次,骰子编号1-6,掷到多少就向前走几步,这个数轴上还有些特殊点,这些点类似
飞行棋中的飞行点,只要到达这些点就可以直接飞到给定点。求总共投掷骰子次数的期望。 题解:如果直接可以飞行就f[i]=f[reach],然后就是递推吧。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#define ll long long
#define N 100007 int n,m;
double f[N];
int go_to[N]; int main()
{
while(~scanf("%d%d",&n,&m)&&(n+m))
{
memset(go_to,-,sizeof(go_to));
memset(f,,sizeof(f));
int x,y;
for(int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
go_to[x]=y;
}
for(int i=n-;i>=;i--)
{
if(go_to[i]==-)
{
for(int j=;j<=;j++){
f[i]+=f[i+j]/6.0;
}
f[i]+=;
}
else f[i]=f[go_to[i]];
}
printf("%.4lf\n",f[]);
}
}
												

HDU4405-Aeroplane chess(概率DP求期望)的更多相关文章

  1. HDU4405 Aeroplane chess (概率DP,转移)

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落 ...

  2. [hdu4405]Aeroplane chess(概率dp)

    题意:某人掷骰子,数轴上前进相应的步数,会有瞬移的情况,求从0到N所需要的期望投掷次数. 解题关键:期望dp的套路解法,一个状态可以转化为6个状态,则该状态的期望,可以由6个状态转化而来.再加上两个状 ...

  3. HDU3853-LOOPS(概率DP求期望)

    LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others) Total Su ...

  4. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  5. hdu 4405 Aeroplane chess(简单概率dp 求期望)

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  6. [ACM] hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...

  7. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  8. LightOJ 1030 【概率DP求期望】

    借鉴自:https://www.cnblogs.com/keyboarder-zsq/p/6216762.html 题意:n个格子,每个格子有一个值.从1开始,每次扔6个面的骰子,扔出几点就往前几步, ...

  9. HDU-4405 Aeroplane chess(概率DP求期望)

    题目大意:一个跳棋游戏,每置一次骰子前进相应的步数.但是有的点可以不用置骰子直接前进,求置骰子次数的平均值. 题目分析:状态很容易定义:dp(i)表示在第 i 个点出发需要置骰子的次数平均值.则状态转 ...

随机推荐

  1. OPENFIRE 启动流程

    在java>org>jivesoftware>openfire>starter,该类中的main方法启动,有图为证: 在start中方法分别调用unpackArchives和f ...

  2. SWTError: No more handles [gtk_init_check() failed] running platform tests (on Linux)

    http://www.lemmster.de/2013-12-19-swterror-no-more-handles-gtk_init_check-failed-running-platform-te ...

  3. mongodb复制集里查看主从操作日志oplog

    MongoDB的replica set架构是通过一个日志来存储写操作的,这个日志就叫做 oplog .oplog.rs 是一个固定长度的 Capped Collection,它存在于local数据库中 ...

  4. 双击窗体是模拟键盘上的Tab键

    实现效果: 知识运用: SendKeys类的Send方法 //向活动应用程序发送击键 public static void Send (string keys) 实现代码: private void ...

  5. BestCoder Round#15 1002-Instruction

    http://acm.hdu.edu.cn/showproblem.php?pid=5083 官方题解——> 1002 Instruction 先考虑编码,首先找到operation对应的编码, ...

  6. class extension、class category、class-continuation category

    class extension Objective-C 2.0增加了class extensions用于解决两个问题: 允许一个对象可以拥有一个私有的interface,且可由编译器验证. 支持一个公 ...

  7. ios之UITabelViewCell的自定义(xib实现)

    通过继承UITableViewCell来自定义cell 1.创建一个空的项目.命名: 2.创建一个UITableViewController 并且同时创建xib: 3.设置AppDelegate.m中 ...

  8. [LUOGU] 1002 过河卒

    题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为"马拦过 ...

  9. 蓝牙学习 (7) - raspberrryPi 扫描TI sensorTag

    前面几篇分别简单涉及了 raspberryPi上bluez BLE sniffer TI SensorTag https://blog.csdn.net/feiwatson/article/detai ...

  10. Mac OS X下安装Vue脚手架(vue-cli)

    前言 Vue作为前端三大框架(Angular,React,Vue)之一,号称是最简单,最容易上手的框架,同时也是行内的大趋势,还可以用来开发最火的小程序.具有开发快,双向数据流等特点,有些人认为Vue ...