题目描述

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

输入

第一行为两个整数n,k。

输出

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

样例输入

4 1

样例输出

3

样例说明:

下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;

测试数据范围

30%的数据 n<=12

100%的数据 n<=1000,k<=1000

/*
设f[i][j]为前i个数,逆序对数为j的方案数
在i-1个数中加入一个数,新增逆序对数为0~i-1,所以f[i][j]=Σf[i-1][k] (j-i+1<=k<=j)
时间复杂度为O(n^3),采用前缀和优化:f[i][j]=g[i-1][j]-g[i-1][j-i]
*/
#include<cstdio>
#include<iostream>
#define M 1010
#define Mod 10000
using namespace std;
int f[M][M],g[M][M];
int read()
{
char c=getchar();int flag=,num=;
while(c<''||c>''){if(c=='-')flag=-;c=getchar();}
while(c>=''&&c<=''){num=num*+c-'';c=getchar();}
return num*flag;
}
int main()
{
int n=read(),k=read();
f[][]=;
for(int i=;i<=k;i++)g[][i]=;
for(int i=;i<=n;i++)
for(int j=;j<=k;j++)
{
f[i][j]=g[i-][j];
if(j-i>=)f[i][j]=(f[i][j]+Mod-g[i-][j-i])%Mod;
if(j)g[i][j]=g[i][j-];
g[i][j]+=f[i][j];
g[i][j]%=Mod;
}
printf("%d",f[n][k]);
return ;
}

逆序对数列(BZOJ 2431)的更多相关文章

  1. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  2. BZOJ 2431 逆序对数列 DP

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MB Description 对于一个数列{ai},如果有i< j且ai> ...

  3. 2431: [HAOI2009]逆序对数列

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status ...

  4. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  5. bzoj2431:[HAOI2009]逆序对数列

    单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...

  6. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  7. 【BZOJ2431】逆序对数列(动态规划)

    [BZOJ2431]逆序对数列(动态规划) 题面 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组 ...

  8. P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...

  9. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  10. 洛谷P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...

随机推荐

  1. C#实现为类和函数代码自动添加版权注释信息的方法

    这篇文章主要介绍了C#实现为类和函数代码自动添加版权注释信息的方法,主要涉及安装文件的修改及函数注释模板的修改,需要的朋友可以参考下   本文实例讲述了C#实现为类和函数代码自动添加版权注释信息的方法 ...

  2. ES6学习笔记(3)----字符串的扩展

    参考书<ECMAScript 6入门>http://es6.ruanyifeng.com/ 字符串的扩展ES6之前只能识别\u0000 - \uFFFF 之间的字符,超过此范围,识别会出错 ...

  3. netcdf源码在windows上的编译

    作者:朱金灿 来源:http://blog.csdn.net/clever101 今天搞搞netcdf源码在windows上的编译,折腾了半天,算是搞成了,特地记录一下过程.我的目标是要生成netcd ...

  4. 如何使用capedit分割数据包文件

    wireshark是一个网络数据包的分析工具,主要用来捕获网卡上的数据包并显示数据包的详细内容.在处理一些大的数据包文件时,如果直接用wireshark图形工具打开一些大文件的数据包会出现响应慢甚至没 ...

  5. Android(java)学习笔记186:多媒体之视频播放器

    1. 这里我们还是利用案例演示视频播放器的使用: (1)首先,我们看看布局文件activity_main.xml,如下: <RelativeLayout xmlns:android=" ...

  6. DBMS的工作模式

    数据库管理系统(DBMS)是指数据库系统中对数据进行管理的软件系统,它是数据库系统的核心组成部分,对数据库的一切操作(增删改查)都是通过DBMS进行的 DBMS的工作模式如下: 1>接受应用程序 ...

  7. qcloudsms_py

    qcloudsms_py from qcloudsms_py import SmsVoicePromptSender from qcloudsms_py.httpclient import HTTPE ...

  8. Java中的反射--Reflect

    在张孝祥老师的Java讲解中,学习到了Java反射的一部分知识,觉得有必要好好学习一下哈. 一.反射的理解 经典总结:反射就是把Java类中的各种成分映射成为相应的Java类 例如:一个Java类中用 ...

  9. iOS开发基础知识

    1:App跳转至系统Settings 跳转在IOS8以上跟以下是有区别的,如果是IOS8以上可以如下设置: NSURL *url = [NSURL URLWithString:UIApplicatio ...

  10. PHP中的正则

    概述 正则表达式是一种描述字符串结果的语法规则,是一个特定的格式化模式,可以匹配.替换.截取匹配的字符串. j简单的说就是通过一些规定的符号和字符组合成的一种语法规则 其实,只有了解一种语言的正则使用 ...