传送门:http://acm.hdu.edu.cn/showproblem.php?pid=1695

先把题目转化为求一个数在区间[1, b / k],另一个数在区间[1, d / k]时,这两个数互质的对数(是number of pairs,不是logarithm,下同)。

纠结了半天,一直在想莫比乌斯反演的公式不是“F(n) = sigma d|n f(d)   =>   f(n) = sigma d|n mu(d) * F(n / d)”吗?没想到还有另外一种形式“F(n) = sigma n|d f(d)   =>   f(n) = sigma n|d mu(d / n) * F(d)”!这就是为什么“对于一些函数f(n),如果我们很难直接求出它的值,而容易求出倍数和或约数和F(n),那么我们可以通过莫比乌斯反演来求得f(n)的值”。

#include <cstdio>

const int maxn = 100005;

int T, a, b, c, d, k, mu[maxn], prime[maxn], tot, tem;
bool book[maxn];
long long ans; inline long long F(int mn, int mx) {
return (long long)((mx << 1 | 1) - mn) * (long long)mn >> 1;
} int main(void) {
mu[1] = 1;
for (int i = 2; i < maxn; ++i) {
if (!book[i]) {
prime[tot++] = i;
mu[i] = -1;
}
for (int j = 0; j < tot; ++j) {
if (i * prime[j] > maxn) {
break;
}
book[i * prime[j]] = true;
if (i % prime[j] == 0) {
break;
}
mu[i * prime[j]] = -mu[i];
}
} scanf("%d", &T);
for (int kase = 1; kase <= T; ++kase) {
printf("Case %d: ", kase);
ans = 0;
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
if (!k) {
puts("0");
continue;
}
b /= k;
d /= k;
if (b > d) {
tem = b;
b = d;
d = tem;
}
for (int i = 1; i <= b; ++i) {
ans += mu[i] * F(b / i, d / i);
}
printf("%lld\n", ans);
}
return 0;
}

  

[hdu1695] GCD【莫比乌斯反演】的更多相关文章

  1. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

  2. hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对

    /** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b ...

  3. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  4. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  5. hdu1695(莫比乌斯反演)

    传送门:GCD 题意:求[1,n],[1,m]gcd为k的对数. 分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1, ...

  6. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  7. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  8. 【BZOJ2818】Gcd [莫比乌斯反演]

    Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...

  9. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  10. BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 2534  Solved: 1129 [Submit][Status][Discu ...

随机推荐

  1. 解决WIN7下VMWARE虚拟机无法上网问题

    一.Win7 虚拟机centos NAT联网 链接地址:http://www.cr173.com/html/19808_1.html,也不知道是哪位大神弄的,实践过,可以使用,但是重启之后却不能用了, ...

  2. 【python】对象和面向对象

    类的定义 python支持多重继承,在类名后面的小括号中,可以列出多个类名,以逗号分割. __init__方法在类的实例创建后被立即调用,注意与c++中构造函数不一样,因为对象在调用__init__时 ...

  3. MySQL5.6 怎样优化慢查询的SQL语句 -- 慢日志介绍

    近期有个开发团队抱怨我们平台包括的mysql cluster不行,总是报mysql的"heartbeat Error".分析了他们收集的日志.没有发现mysql cluster节点 ...

  4. Office EXCEL 如何保留一位小数,并且单击这个单元格的时候没有一大串小数

    左侧有一列数据,即便我设置单元格格式,把小数位数设为1,看上去的确四舍五入,保留一位小数了,但是实际上我鼠标双击任意单元格,还是原来的数值,这样的数据如果是要发给别人的,肯定不好   如果进行选择性粘 ...

  5. CSS 相对|绝对(relative/absolute)定位系列(一)

    一.有话要说 以前写内容基本上都是:眼睛一亮——哟呵,这个不错,写!然后去古人所说的茅房里蹲会儿,就有写作的思路了.但是,构思相对/绝对(relative/absolute)定位系列却有好些时日,考虑 ...

  6. SLF4J: Failed to load class的问题及解决

    今天在做接口测试,一运行测试程序,就跳出这样一个大大的错误: SLF4J: Failed to load class “org.slf4j.impl.StaticLoggerBinder”. SLF4 ...

  7. SpringMVC_中文乱码的配置 --跟海涛学SpringMVC(和自己在项目中的实际使用的对比)

    spring Web MVC框架提供了org.springframework.web.filter.CharacterEncodingFilter用于解决POST方式造成的中文乱码 <filte ...

  8. envoy

    微服务意味着网络更加依赖于服务抽象边界. 随着相互依赖的服务数量日渐增长,系统100%没问题的时间会变少,整个系统经常有部分功能处于降级状态.

  9. Delphi汉字简繁体转换代码(分为D7和D2010版本)

    //delphi 7 Delphi汉字简繁体转换代码unit ChineseCharactersConvert; interface uses   Classes, Windows; type   T ...

  10. mybatis批量操作数据

    批量查询语句: List<MoiraiProductResource> selectBatchInfo(List<Long> idList); <!-- 批量查询 --& ...