题目大意是:

给定一个n,k,表示树上共有n个节点,每个节点最多有k个叶子,问一共多少种摆法,答案对1000000007取模

这里定义一个dp[i]表示 i 个节点对应有多少种方法

f[i][j] 表示一个除去顶点的树中,这个顶点延伸出 j 个子树 , 这j个子树中共有i 个点

那么只要在f[i][j]上添加一个顶点就得到了 dp[i]

所以dp[i+1] = f[i][0] + f[i][1] ......+f[i][k]

f[i][j] = ∑(f[i-k][j-1]*dp[k]) k<=i;

 #include <cstdio>
#include <cstring>
#include <iostream>
#define maxn 205
const int mod = ;
using namespace std; long long dp[maxn],f[maxn][]; int main()
{
// freopen("a.in" , "r" , stdin);
int T,n,k;
scanf("%d",&T);
while(T--)
{
scanf("%d%d" , &n , &k);
memset(f , , sizeof(f));
memset(dp , , sizeof(dp));
f[][] = ;
dp[] = ;
for(int i= ; i<n ; i++){
for(int j=k ; j>= ; j--){
for(int t= ; t<=i ; t++){
f[i][j] += (f[i-t][j-]*dp[t])%mod;
f[i][j]%=mod;
}
// cout<<"i: "<<i<<" j: "<<j<<" "<<f[i][j]<<endl;;
} for(int j= ; j<=k ; j++){
dp[i+] += f[i][j];
dp[i+]%=mod;
}
// cout<<"i: "<<i<<" "<<dp[i]<<endl;
}
printf("%lld\n" , dp[n]);
}
return ;
}

COJ 1351 Tree Counting 动态规划的更多相关文章

  1. CSU 1351 Tree Counting

    原题链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1351 DP题,毫无疑问.由于动态规划题目做得少.不熟悉,刚开始自己用f[i]表示用 i ...

  2. csuoj 1351: Tree Counting

    这是一个动态规划的题: 当初想到要用dp,但是一直想不到状态转移的方程: 题解上的原话: 动态规划,设 g[i]表示总结点数为 i 的方案种数,另设 f[i][j]表示各个孩子的总结点数为i,孩子的个 ...

  3. 【CodeForces】914 H. Ember and Storm's Tree Game 动态规划+排列组合

    [题目]H. Ember and Storm's Tree Game [题意]Zsnuoの博客 [算法]动态规划+排列组合 [题解]题目本身其实并不难,但是大量干扰因素让题目显得很神秘. 参考:Zsn ...

  4. HDU 5909 Tree Cutting 动态规划 快速沃尔什变换

    Tree Cutting 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T ...

  5. BZOJ 3227 [Sdoi2008]红黑树(tree) ——贪心 动态规划

    首先可以想到一个贪心的方法,然后一层一层的合并. 也可以采用动态规划的方式,为了写起来好写,把点数*2+1,然后发现在本机上跑不过1500的数据. 交上去居然A掉了. 贪心 #include < ...

  6. 自由树的计数 Labeled unrooted tree counting

    问题: 4个标记为1,2,3,4的节点构成自由树(算法导论里的定义,连接着,无环,无向的图),一共有多少种构造方法?如果N个节点呢? 解决方法: 4个节点可以通过穷举的方式得到答案,一共有16中方式. ...

  7. POJ3046--Ant Counting(动态规划)

    Bessie was poking around the ant hill one day watching the ants march to and fro while gathering foo ...

  8. ACM学习历程—HDU 5534 Partial Tree(动态规划)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5534 题目大意是给了n个结点,让后让构成一个树,假设每个节点的度为r1, r2, ...rn,求f(x ...

  9. CodeChef Max-digit Tree(动态规划)

    传送门. 题解: 最主要的问题是如何判断一个数是否合法,这就需要发现性质了. 这个状态划分还是不太容易想到, 每次加的数\(∈[0,k)\),也就是个位一直在变变变,更高的位每次都是加一,这启发我们状 ...

随机推荐

  1. js最全的十种跨域解决方案

    在客户端编程语言中,如javascript和ActionScript,同源策略是一个很重要的安全理念,它在保证数据的安全性方面有着重要的意义.同 源策略规定跨域之间的脚本是隔离的,一个域的脚本不能访问 ...

  2. 洛谷P3366 【模板】最小生成树(Kruskal)

    题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<= ...

  3. Java多线程(二) synchronized 针对对象进行锁定

    http://www.cnblogs.com/QQParadise/articles/5059824.html 1.方法内的变量为线程安全的 2.实例变量非线程安全的 public class Has ...

  4. 贪心 Codeforces Round #263 (Div. 2) C. Appleman and Toastman

    题目传送门 /* 贪心:每次把一个丢掉,选择最小的.累加求和,重复n-1次 */ /************************************************ Author :R ...

  5. cocos creator 场景如何透明,多个canvas层级显示

    转载地址:https://forum.cocos.com/t/creator-canvas/55373/14 Creator 版本:1.7 目标平台:WEB MOBILE 项目需要,页面做了多个Can ...

  6. 初识mybatis之入门案例

    我也是自学了一下,在idea中基于maven的mybatis的配置.有什么不对的地方,请指正,谢谢. 1.1咋们先来配置测试一下,配置mybatis的图解: 1.2 pom.xml需要mybatis的 ...

  7. .Net实战之反射外卖计费

    场景 叫外卖支付,可以有以下优惠: 1.  满30元减12 2.  是会员减配送费,比如5元 3.  优惠券 …. 问题? 如何在不改代码的情况下更灵活的去控制优惠的变化??? 有些代码与实际业务可能 ...

  8. CSS知识点整理(1):CSS语法,层叠次序,选择器,其他重要方面。

    1. css的全称 2. CSS的层叠次序:优先级由低到高 ·浏览器设置 ·外部样式表 或者 内部样式表 —— 就近原则 ·内联样式 3. CSS的3种形式,以及每种形式的语法格式 ——注意样式表的为 ...

  9. php angular/think angular/php模版引擎

    在thinphp5中发现一个好用的模版引擎—think-angular, 此模板引擎主要特点是 不需要额外的标签定义, 全部使用属性定义, 写好的模板文件在IDE格式化代码的时候很整洁, 因为套完的模 ...

  10. UVM基础之---------Reporting Classes

    Reporting 类提供了一组工具用于格式化报告输出 report机制大概包括四个主要的类uvm_report_object,uvm_report_handler, uvm_report_serve ...