Petra and Jan have just received a box full of free goodies, and want to divide the goodies between them. However, it is not easy to do this fairly, since they both value different goodies differently. To divide the goodies, they have decided upon the following procedure: they choose goodies one by one, in turn, until all the goodies are chosen. A coin is tossed to decide who gets to choose the first goodie. Petra and Jan have different strategies in deciding what to choose. When faced with a choice, Petra always selects the goodie that is most valuable to her. In case of a tie, she is very considerate and picks the one that is least valuable to Jan. (Since Petra and Jan are good friends, they know exactly how much value the other places on each goodie.) Jan’s strategy, however, consists of maximizing his own final value. He is also very considerate, so if multiple choices lead to the same optimal result, he prefers Petra to have as much final value as possible. You are given the result of the initial coin toss. After Jan and Petra have finished dividing all the goodies between themselves, what is the total value of the goodies each of them ends up with? Input On the first line a positive integer: the number of test cases, at most 100. After that per test case: • One line with an integer n (1 ≤ n ≤ 1000): the number of goodies. • One line with a string, either ‘Petra’ or ‘Jan’: the person that chooses first. • n lines with two integers pi and ji (0 ≤ pi , ji ≤ 1000) each: the values that Petra and Jan assign to the i-th goodie, respectively. Output Per test case: • One line with two integers: the value Petra gets and the value Jan gets. Both values must be according to their own valuations. Sample Input 3 4 Petra 100 80 70 80 50 80 30 50 4 Petra 10 1 1 10 6 6 4 4 7 Jan 4 1 3 1 2 1 1 1 1 2 1 3 1 4 Sample Output 170 130 14 16 9 10

两个人选东西,一个是贪心的策略,选当前对自己价值尽量大的,然后让对别人的价值尽量小

第二个人的策略是让自己最终的价值尽量大,同时让自己选的东西对别人的价值尽量小

对物品按第一个人的价值进行排序,(其实这就是第一个人对物品的选择序),然后在这个序列上进行动态规划。

DP[i][j]表示在前i个物品中选择j个第二个人获得的价值

cost[i][j[表示在前I个物品中选择j个第一个人损失的价值

dp[i][j] = dp[i-1][j-1] + a[i].val 注意j不能超过(i+1)/2

如果是贪心的先选就从序列中第二个元素开始DP

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<memory>
#include<bitset>
#include<string>
#include<functional>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL; #define MAXN 1008
#define INF 0x3f3f3f3f struct node
{
int pi, ji;
bool operator < (const node& rhs)const
{
if (pi == rhs.pi)
return ji < rhs.ji;
return pi > rhs.pi;
}
};
int dp[MAXN][MAXN], n, cost[MAXN][MAXN];
//dp[i][j] 表示前i个物品中选取j个
// cost[i][j]表示---的时候P损失的价值
node a[MAXN];
char op[];
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
memset(dp, , sizeof(dp));
memset(cost, , sizeof(cost));
int beg = , sum = ;
scanf("%d%s", &n, op);
if (op[] == 'P')
beg = ;
for (int i = ; i <= n; i++)
scanf("%d%d", &a[i].pi, &a[i].ji), sum += a[i].pi;
sort(a + , a + n + );
for (int i = ; i <= n - beg; i++)//如果是P开始就dp处理n-1个物品,如果是j开始就dp n 个
{
for (int j = ; j <= (i + ) / ; j++)
{
if (dp[i - ][j] > dp[i - ][j - ] + a[i + beg].ji)
{
dp[i][j] = dp[i - ][j];
cost[i][j] = cost[i - ][j];
}
else if (dp[i - ][j] == dp[i - ][j - ] + a[i + beg].ji)
{
dp[i][j] = dp[i - ][j];
cost[i][j] = min(cost[i - ][j], cost[i - ][j - ] + a[i + beg].pi);
}
else
{
dp[i][j] = dp[i - ][j - ] + a[i + beg].ji;
cost[i][j] = cost[i - ][j - ] + a[i + beg].pi;
}
}
}
printf("%d %d\n", sum - cost[n - beg][(n - beg + ) / ], dp[n - beg][(n - beg + ) / ]);
}
}

Free Goodies UVA - 12260的更多相关文章

  1. Free Goodies UVA - 12260 贪心

      Free Goodies Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu [Submit ...

  2. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

  3. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

  4. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

  5. UVA&&POJ离散概率与数学期望入门练习[4]

    POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...

  6. UVA计数方法练习[3]

    UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...

  7. UVA数学入门训练Round1[6]

    UVA - 11388 GCD LCM 题意:输入g和l,找到a和b,gcd(a,b)=g,lacm(a,b)=l,a<b且a最小 g不能整除l时无解,否则一定g,l最小 #include &l ...

  8. UVA - 1625 Color Length[序列DP 代价计算技巧]

    UVA - 1625 Color Length   白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束   和模拟赛那道环形DP很想,计算这 ...

  9. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. C#控件置于底层或顶层

    btn.BringToFront();//置于顶层 btn.SendToBack();//置于底层

  2. AJPFX理解反射及反射的应用

    怎么理解反射,反射的应用        反射就是把Java类中的各种成分映射成相应的Java类.        一般情况下我们要解决某个问题,先找到相关的类,创建该类的对象,然后通过该对象调用对应的方 ...

  3. css中border制作各种形状

    css利用border制作各种形状的原理如图: 使用border绘制三角形是什么原理?事实上,宽度相等的border是以45度对接的,如下图: 没有了上border如图所示: 再设置border的宽度 ...

  4. Java:核心概念j积累(一)

    1.      抽象 抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方面.抽象并不打算了解全部问题,而只是选择其中的一部分,暂时不用部分细节.抽象包括两个方面,一是过 ...

  5. 到T-SQL DML 三级的阶梯:在SQL server中实现关系模型

    作者: Gregory Larsen, 2017/08/02 (第一次出版: 2011/11/09) 翻译:谢雪妮,许雅莉,赖慧芳,刘琼滨 译文: 系列 该文章是阶梯系列的一部分:T-SQL DML的 ...

  6. Farseer.net轻量级开源框架说明及链接索引

    Farseer.net是什么? 基于.net framework 4 开发的一系列解决方案. 完全开源在GitHub中托管.并发布到NuGet中. Farseer.Net由最初的关系数据库ORM框架后 ...

  7. (转)淘淘商城系列——SSM框架整合之逆向工程

    http://blog.csdn.net/yerenyuan_pku/article/details/72758590 我们知道在开发中有些工作是非常耗时但是又没有什么技术含量的,比如创建mapper ...

  8. bind - 将一个名字和一个套接字绑定到一起

    SYNOPSIS 概述 #include <sys/types.h> #include <sys/socket.h> int bind(int sockfd, struct s ...

  9. 火狐删除配置文件 会删除目录下所有文件 切记不要把配置文件建立在桌面 恢复软件:易我数据恢复向导 9.0 DiskGenius500

    火狐删除配置文件 会删除目录下所有文件 切记不要把配置文件建立在桌面 恢复软件:易我数据恢复向导 9.0  DiskGenius500 结果:由于时间比较常 恢复文件均失败了~

  10. vue 添加 fastclick的支持

    fastclick:处理移动端click事件300毫秒延迟 1.兼容性iOS 3及更高版本的移动SafariiOS 5及更高版本的ChromeAndroid上的Chrome(ICS)Opera Mob ...