Free Goodies UVA - 12260
Petra and Jan have just received a box full of free goodies, and want to divide the goodies between them. However, it is not easy to do this fairly, since they both value different goodies differently. To divide the goodies, they have decided upon the following procedure: they choose goodies one by one, in turn, until all the goodies are chosen. A coin is tossed to decide who gets to choose the first goodie. Petra and Jan have different strategies in deciding what to choose. When faced with a choice, Petra always selects the goodie that is most valuable to her. In case of a tie, she is very considerate and picks the one that is least valuable to Jan. (Since Petra and Jan are good friends, they know exactly how much value the other places on each goodie.) Jan’s strategy, however, consists of maximizing his own final value. He is also very considerate, so if multiple choices lead to the same optimal result, he prefers Petra to have as much final value as possible. You are given the result of the initial coin toss. After Jan and Petra have finished dividing all the goodies between themselves, what is the total value of the goodies each of them ends up with? Input On the first line a positive integer: the number of test cases, at most 100. After that per test case: • One line with an integer n (1 ≤ n ≤ 1000): the number of goodies. • One line with a string, either ‘Petra’ or ‘Jan’: the person that chooses first. • n lines with two integers pi and ji (0 ≤ pi , ji ≤ 1000) each: the values that Petra and Jan assign to the i-th goodie, respectively. Output Per test case: • One line with two integers: the value Petra gets and the value Jan gets. Both values must be according to their own valuations. Sample Input 3 4 Petra 100 80 70 80 50 80 30 50 4 Petra 10 1 1 10 6 6 4 4 7 Jan 4 1 3 1 2 1 1 1 1 2 1 3 1 4 Sample Output 170 130 14 16 9 10
两个人选东西,一个是贪心的策略,选当前对自己价值尽量大的,然后让对别人的价值尽量小
第二个人的策略是让自己最终的价值尽量大,同时让自己选的东西对别人的价值尽量小
对物品按第一个人的价值进行排序,(其实这就是第一个人对物品的选择序),然后在这个序列上进行动态规划。
DP[i][j]表示在前i个物品中选择j个第二个人获得的价值
cost[i][j[表示在前I个物品中选择j个第一个人损失的价值
dp[i][j] = dp[i-1][j-1] + a[i].val 注意j不能超过(i+1)/2
如果是贪心的先选就从序列中第二个元素开始DP
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<memory>
#include<bitset>
#include<string>
#include<functional>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL; #define MAXN 1008
#define INF 0x3f3f3f3f struct node
{
int pi, ji;
bool operator < (const node& rhs)const
{
if (pi == rhs.pi)
return ji < rhs.ji;
return pi > rhs.pi;
}
};
int dp[MAXN][MAXN], n, cost[MAXN][MAXN];
//dp[i][j] 表示前i个物品中选取j个
// cost[i][j]表示---的时候P损失的价值
node a[MAXN];
char op[];
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
memset(dp, , sizeof(dp));
memset(cost, , sizeof(cost));
int beg = , sum = ;
scanf("%d%s", &n, op);
if (op[] == 'P')
beg = ;
for (int i = ; i <= n; i++)
scanf("%d%d", &a[i].pi, &a[i].ji), sum += a[i].pi;
sort(a + , a + n + );
for (int i = ; i <= n - beg; i++)//如果是P开始就dp处理n-1个物品,如果是j开始就dp n 个
{
for (int j = ; j <= (i + ) / ; j++)
{
if (dp[i - ][j] > dp[i - ][j - ] + a[i + beg].ji)
{
dp[i][j] = dp[i - ][j];
cost[i][j] = cost[i - ][j];
}
else if (dp[i - ][j] == dp[i - ][j - ] + a[i + beg].ji)
{
dp[i][j] = dp[i - ][j];
cost[i][j] = min(cost[i - ][j], cost[i - ][j - ] + a[i + beg].pi);
}
else
{
dp[i][j] = dp[i - ][j - ] + a[i + beg].ji;
cost[i][j] = cost[i - ][j - ] + a[i + beg].pi;
}
}
}
printf("%d %d\n", sum - cost[n - beg][(n - beg + ) / ], dp[n - beg][(n - beg + ) / ]);
}
}
Free Goodies UVA - 12260的更多相关文章
- Free Goodies UVA - 12260 贪心
Free Goodies Time Limit: 3000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu [Submit ...
- uva 1354 Mobile Computing ——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5
- UVA 10564 Paths through the Hourglass[DP 打印]
UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...
- UVA 11404 Palindromic Subsequence[DP LCS 打印]
UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...
- UVA&&POJ离散概率与数学期望入门练习[4]
POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...
- UVA计数方法练习[3]
UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...
- UVA数学入门训练Round1[6]
UVA - 11388 GCD LCM 题意:输入g和l,找到a和b,gcd(a,b)=g,lacm(a,b)=l,a<b且a最小 g不能整除l时无解,否则一定g,l最小 #include &l ...
- UVA - 1625 Color Length[序列DP 代价计算技巧]
UVA - 1625 Color Length 白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束 和模拟赛那道环形DP很想,计算这 ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
随机推荐
- 设置电脑IP
1.首先在Win7桌面上找到“网络”入口,如下图: 进入Win7网络 2.进入网络之后我们再点击顶部的“网络共享中心”,如下图: 进入Win7网络共享中心 3.进入Win7网络共享中心之后,我 ...
- 快速体验openstack-用devstack安装openstack
官网安装说明: --2014年11月15日14:14:21 安装环境:Ubuntu12.04,安装官网的说明遇到了小问题,记录在这里 --http://docs.openstack.org/devel ...
- SugarCRM安装踩雷(一)
安装SugarCRM前置条件: 1.找对平台.正确版本的安装包 2.APACHE + MYSQL + TOMCAT环境先确保OK 坑1: 进入安装参数设置步骤的MYSQL用户密码——这里根据Mysql ...
- H.264和HEVC分析软件和工具【转】
一.264分析两大利器:264VISA和Elecard StreamEye Tools 264visa 强力的h264实时分析工具 ,能分析各种场合下的h264资源,适用于h264开发者,学习者.在图 ...
- informix数据库的日志
看到一句sql,没见过: CREATE TABLE aaad ( chianm ), course ), score INTEGER ) IN adbs EXTENT SIZE LOCK MODE R ...
- leetcode_712. Minimum ASCII Delete Sum for Two Strings
https://leetcode.com/problems/minimum-ascii-delete-sum-for-two-strings/ 给定两个string s1,s2,从s1和s2中删除一些 ...
- KMP中next数组的理解与应用
理解 1.next数组一直往前走 next数组一直往前走,得到的所有前缀也是当前主串的后缀,当然了,也是当前主串的前缀. 2.周期性字符串 1.周期性字符串$\Leftrightarrow n \,\ ...
- [css或js控制图片自适应]
[css或js控制图片自适应]图片自动适应大小是一个非常常用的功能,在进行制作的时候为了防止图片撑开容器而对图片的尺寸进行必要的控制,我们可不可以用CSS控制图片使它自适应大小呢?此个人博客想到了一个 ...
- ORACLE中的游标Cursor总结
游标(Cursor):用来查询数据库,获取记录集合(结果集)的指针,可以让开发者一次访问一行结果集,在每条结果集上作操作. 游标可分为: 1. 静态游标:分为显式(explicit)游标和 ...
- Python学习笔记(1)——Python的概述(Python的环境、变量、数据类型、基本运算)
Table of Contents 1. Python概述 1.1. Python基础知识 1.2. 运行环境 1.3. Python的格式 1.4. Python的变量. 2. Python的数据类 ...