poj—— 1860 Currency Exchange
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 29851   Accepted: 11245

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题目大意:

题目中主要是说存在货币兑换点,然后现在手里有一种货币,要各种换来换去,最后再换回去的时候看能不能使原本的钱数增多,每一种货币都有对应的汇率,而货币A到货币B的汇率即为1货币A换得得货币B的数量,但兑换点是要收取佣金的,且佣金从源货币中扣除,例如,你想在汇率29.75,佣金为0.39的兑换点把100美元换成卢布,得到的卢布数即为(100-0.39)*29.75 = 2963.3975.

样例解释:

3
2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

多组输入,第一行中N代表有N种货币可以互相兑换,M代表有M个货币兑换点,S代表这个人手中的的货币的编号,V代表这个人手中拥有的货币数量,底下M行

每行六个数,A,B代表可以交换的货币A和B,剩下的实数RAB,CAB,RBA,CBA,代表A到B的汇率,佣金,B到A的汇率,佣金。以某种兑换方式增加原本的钱数,而且必须兑换为原来的货币。

 
思路:
货币的交换是可以重复多次的,所以我们需要找出是否存在正权回路,且最后得到的s金额是增加的。
这一道题虽然需要求的是正权回路,但相应的这道题当中我们需要求的是最长路径,因此和Bellman-Ford算法中判断负环是类似的。
因此,我们只需要修改原本的松弛条件,然后先进行n-1轮松弛,最后再进行一次松弛作为检测存不存在正环就可以了。
 
链接地址:(参考博客)   http://blog.csdn.net/dgghjnjk/article/details/51684154
代码:
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1010
using namespace std;
int n,m,head[N],sum[N],tot,num,u,v;
bool vis[N];
double dis[N],x,y,xx,yy,money;
struct Edge
{
    int u,v,next;
    double x,y;
}edge[N<<];
int add(int u,int v,double x,double y)//注意:传上来的是double类型的,开始时一直传的是int导致wa
{
    tot++;//从1开始用,开始时一直是在后面++,导致一直wa
    edge[tot].u=u;
    edge[tot].v=v;
    edge[tot].x=x;
    edge[tot].y=y;
    edge[tot].next=head[u];
    head[u]=tot;
}
void begin()
{
    memset(head,,sizeof(head));
    memset(sum,,sizeof(sum));
    memset(dis,,sizeof(dis));
    memset(vis,false,sizeof(vis));
    tot=;
}
int spfa(int s)
{
    queue<int>q;
    dis[s]=money;
    vis[s]=true;
    q.push(s);
    while(!q.empty())
    {
        int x=q.front();
        q.pop();vis[x]=false;
        for(int i=head[x];i;i=edge[i].next)
        {
            int v=edge[i].v;
            if(dis[v]<(dis[x]-edge[i].y)*edge[i].x)
            {
                dis[v]=(dis[x]-edge[i].y)*edge[i].x;
                if(!vis[v])
                {
                    vis[v]=true;
                    q.push(v);
                }
                sum[v]++;
                if(sum[v]>n)
                 ;
            }
        }
    }
    ;
}
int main()
{
    while(scanf("%d %d %d %lf",&n,&m,&num,&money)!=EOF)
    {
        begin();
        ;i<=m;i++)
        {
            scanf("%d %d %lf %lf %lf %lf",&u,&v,&x,&y,&xx,&yy);
            add(u,v,x,y);
            add(v,u,xx,yy);
        }
        ) printf("NO\n");
        else printf("YES\n");
    }
    ;
}

Currency Exchange(最短路)的更多相关文章

  1. POJ 1860 Currency Exchange 最短路+负环

    原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  2. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  3. poj 1860 Currency Exchange (最短路bellman_ford思想找正权环 最长路)

    感觉最短路好神奇呀,刚开始我都 没想到用最短路 题目:http://poj.org/problem?id=1860 题意:有多种从a到b的汇率,在你汇钱的过程中还需要支付手续费,那么你所得的钱是 mo ...

  4. POJ 1860 Currency Exchange 最短路 难度:0

    http://poj.org/problem?id=1860 #include <cstdio> //#include <queue> //#include <deque ...

  5. POJ1860 Currency Exchange(最短路)

    题目链接. 分析: 以前没做出来,今天看了一遍题竟然直接A了.出乎意料. 大意是这样,给定不同的金币的编号,以及他们之间的汇率.手续费,求有没有可能通过不断转换而盈利. 直接用Bellman-ford ...

  6. 最短路(Bellman_Ford) POJ 1860 Currency Exchange

    题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...

  7. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 60000/30000K (Java/Other) T ...

  8. POJ1860——Currency Exchange(BellmanFord算法求最短路)

    Currency Exchange DescriptionSeveral currency exchange points are working in our city. Let us suppos ...

  9. POJ1860 Currency Exchange【最短路-判断环】

    Several currency exchange points are working in our city. Let us suppose that each point specializes ...

  10. (最短路 SPFA)Currency Exchange -- poj -- 1860

    链接: http://poj.org/problem?id=1860 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 2326 ...

随机推荐

  1. oracle中group by的高级用法

    简单的group by用法 select c1,sum(c2) from t1 where t1<>'test' group by c1 having sum(c2)>100; ro ...

  2. shell脚本,通过一个shell程序计算n的阶乘。

    [root@localhost ~]# cat jiechen.sh #!/bin/bash #设计一个shell程序计算n的阶乘,要求: #.从命令行接收参数n; #.在程序开始后立即判断n的合法性 ...

  3. Spring框架context的注解管理方法之二 使用注解注入基本类型和对象属性 注解annotation和配置文件混合使用(半注解)

    首先还是xml的配置文件 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=" ...

  4. 关于PHP版本比较函数version_compare的问题

    $version1="v4.0"; $version2="v4.0.0"; print_r(version_compare($version1,$version ...

  5. laravel中对加载进行优化

    在laravel中的模型与模型之间创建好关联关系会比较方便的方法 但是我们为了方便,有时也会忽略一些东西,比如: 我们在控制器中把整个一个文章对象传到了模板页面 在一次for循环下, 我们对数据进行了 ...

  6. PyQt5(1)——QToolTip, QPushButton, QMessageBox, QDesktopWidget

    #面向对象方法 import sys from PyQt5.QtWidgets import QApplication, QWidget, QToolTip, QPushButton, QMessag ...

  7. LeetCode(202) Happy Number

    题目 Write an algorithm to determine if a number is "happy". A happy number is a number defi ...

  8. H.264 与 MPEG-4 压缩格式的变革

    h.264 和 mpeg-4 的关系: h.264 /avc ( advanced video coding )标准,是 mpeg-4 的第 10 部分. mpeg-4的初衷是将dvd质量的图像码流从 ...

  9. Python3 中 configparser 模块解析配置的用法详解

    configparser 简介 configparser 是 Pyhton 标准库中用来解析配置文件的模块,并且内置方法和字典非常接近.Python2.x 中名为 ConfigParser,3.x 已 ...

  10. UI测试点

    UI测试点 1.界面是否美观 2.元素大小 3.界面元素是否对齐方式统一 4.界面字体属性是否正确 5.界面链接及触发动作 6.元素内容是否显示正确.易懂.友好 7.所有输入框进行输入判断测试 8.所 ...