给出3个正整数A B C,求A^B Mod C。

 
例如,3 5 8,3^5 Mod 8 = 3。
Input
3个正整数A B C,中间用空格分隔。(1 <= A,B,C <= 10^9)
Output
输出计算结果
Input示例
3 5 8
Output示例
3
解:
思路一:暴力求解。
思路二:通过公式(a * b) mod c = ((a mod c)*(b mod c)) mod c 简化求解。
思路三:快速幂。简单的说,快速幂就是将指数转化为二进制的形式并差分开相乘(理解的关键在于明白指数上二进制每左移一位,整个数就在原基础上乘方)。
思路二较之思路一避免了求解a^b的过程中,其值溢出的可能;而快速幂则提高了计算a^b的速度。
 #include <stdio.h>

 int main()
{
long long a, b, c;
while (scanf_s("%lld%lld%lld", &a, &b, &c) != EOF)
{
int ans = ;
a %= c;
while (b)
{
if (b & )
{
ans = ans * a % c;
}
a = a * a % c;
b >>= ;
}
printf("%d\n", ans);
}
return ;
}

(快速幂)51NOD 1046 A^B Mod C的更多相关文章

  1. 计算幂 51Nod 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  2. 算法竞赛进阶指南--快速幂,求a^b mod p

    // 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...

  3. 51Nod 1046 A^B Mod C(日常复习快速幂)

    1046 A^B Mod C 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = ...

  4. 矩阵快速幂 51nod

    基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 给出一个N * N的矩阵,其中的元素均为正整数.求这个矩阵的M次方.由于M次方的计算结果太大,只需要输出 ...

  5. 51NOD 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) ...

  6. 快速幂(51Nod1046 A^B Mod C)

    快速幂也是比较常用的,原理在下面用代码解释,我们先看题. 51Nod1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. In ...

  7. (分治法 快速幂)51nod1046 A^B Mod C

    1046 A^B Mod C   给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. 收起   输入 3个正整数A B C,中间用空格分隔.(1 < ...

  8. 51Nod 1046 A^B Mod C Label:快速幂

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  9. XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]

    是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...

随机推荐

  1. 《ajax学习》之ajax+JavaScript事件验证用户名是否可注册

    当用户注册时,服务器数据库需要对用户输入的用户信息(以用户名为例子)进行验证,在不刷新页面的情况下又需要页面和服务器进行数据请求,最好的方法是用ajax异步请求. 一.实现思路: 1.用户输入信息 2 ...

  2. TestNG 练习

    java文件 package selniumhomework; import org.testng.annotations.Test; public class Test1 { @Test(group ...

  3. 网络编程进阶:并发编程之协程、IO模型

    协程: 基于单线程实现并发,即只用一个主线程(此时可利用的CPU只有一个)情况下实现并发: 并发的本质:切换+保存状态 CPU正在运行一个任务,会在两种情况下切走去执行其他任务(切换有操作系统强制控制 ...

  4. POJ 2778 (AC自动机+矩阵乘法)

    POJ 2778 DNA Sequence Problem : 给m个只含有(A,G,C,T)的模式串(m <= 10, len <=10), 询问所有长度为n的只含有(A,G,C,T)的 ...

  5. spring 数据源JNDI 基于tomcat mysql配置

    关键代码 <bean id="dataSource" class="org.springframework.jndi.JndiObjectFactoryBean&q ...

  6. 我的arcgis培训照片5

    来自:http://www.cioiot.com/successview-528-1.html

  7. Jmeter执行java脚本结束时提示:The JVM should have exited but did not.

    使用jmeter对dubbo进行压测时,需要使用jmeter的sampler里的java请求 使用./jmeter.sh -n -t test.jmx -l test.jmx -o -e test后台 ...

  8. win7如何更改语言教程

    一.首先从桌面左下角的开始菜单中找到“控制面板”,然后打开,如下图所示: 打开电脑控制面板 二.进入控制面板之后,我们再进入“时钟.语言和区域”设置,如下图所示: 电脑语言改成英文方法 三.进入电脑语 ...

  9. mysql 经常使用命令整理总结

    #改动字段类型 alter table `table_name` modify column ip varchar(50); #添加字段 alter table `table_name` add ip ...

  10. C语言之基本算法25—牛顿迭代法求方程近似根

    //牛顿迭代法! /* ============================================================ 题目:用牛顿迭代法求解3*x*x*x-2*x*x-16 ...