luogu2398 SUM GCD
题目大意:求sum i(1->n) (sum j(1->n) (gcd(i,j)))。
对于每对(i,j)都来一次gcd很慢,但是我们知道,一个约数i在1~n范围内是n/i个数的约数。gcd也是个约数,如果能利用到这一点,不就可以同时处理很多对(i,j)了吗?
我们看看最大公约数等于i的数对(x,y)个数f[i]是多少,再让f[i]*(2*i-1)就是这个最大公因数对答案ans做出的贡献。
f[i]=公约数中含有i的个数-sum j(i->min(m,n)/i) (f[i*j])。容斥原理,如果i*j是某个数对的最大公因数,则i就不是它的最大公因数。把这样的点都抠掉,剩下的就都是关于最大公因数是i的了。
公约数含有i的个数=m/i*n/i。数对(x,y)的公约数中含有i当且仅当i既是x的约数又是y的约数。先选择约数中含有i的x,其有m/i个。这时再选择y,其有n/i个。根据乘法原理,因为是依次选择,所以两个式子相乘。
#include <cstdio>
using namespace std; #define ll long long const int MAX_N = 100010; ll Proceed(ll n)
{
ll ans = 0;
static ll f[MAX_N];
for (int i = n; i >= 1; i--)
{
f[i] = (n / i) * (n / i);
for (int j = 2; j <= n / i; j++)
f[i] -= f[i*j];
ans += i*f[i];
}
return ans;
} int main()
{
#ifdef _DEBUG
freopen("c:\\noi\\source\\input.txt", "r", stdin);
#endif
ll n;
scanf("%lld", &n);
printf("%lld\n", Proceed(n));
return 0;
}
luogu2398 SUM GCD的更多相关文章
- luoguP2398 GCD SUM [gcd]
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...
- LuoguP2398 GCD SUM
题目地址 题目链接 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n ...
- 洛谷P2398 GCD SUM [数论,欧拉筛]
题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...
- 洛谷P2398 GCD SUM
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- *P2398 GCD SUM[数论]
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 解析 给出n求sum. gcd(x,y)表示x,y的最大公约数. 直接枚举复杂度为\(O(n^2)\),显然无 ...
- 1220 - Mysterious Bacteria--LightOj1220 (gcd)
http://lightoj.com/volume_showproblem.php?problem=1220 题目大意: 给你一个x,求出满足 x=b^p, p最大是几. 分析:x=p1^a1*p2^ ...
- USACO GCD Extreme(II)
题目大意:求gcd(1,2)+gcd(1,3)+gcd(2,3)+...+gcd(n-1,n) ---------------------------------------------------- ...
- 关于gcd的几个问题
这两天刷了几个关于gcd的很类似的问题,总结一下: BZOJ2818 1<=x<=n,1<=y<=n,求满足gcd(x,y)=质数的个数 BZOJ2190 1<=x< ...
随机推荐
- BZOJ 4650 [Noi2016]优秀的拆分 ——后缀数组
我们只需要统计在某一个点开始的形如$AA$字符串个数,和结束的个数相乘求和. 首先枚举循环节的长度L.即$\mid (A) \mid=L$ 然后肯定会经过s[i]和[i+L]至少两个点. 然后我们可以 ...
- HDU 1565 方格取数(1) ——插头DP
[题目分析] 其实直接状压就可以了. 但是有点闲,又写了一个可读性极差,智商低下,很(gou)好(pi)的代码 [代码] #include <cstdio> #include <cs ...
- jsp、Html页面注释的种类
<!-- 这里面的注释在查看页面源代码时,依旧可以看到,另外页面加载时这里面注释的内容仍旧会编译 --> <%-- JSP中的注释,这里面的内容在查看页面源代码时,看不到这里面注释书 ...
- Mongodb_分片集群模式
前面介绍的副本集模式实现了数据库高可用. 但是还是存在的问题是: 所有的从节点都是从主节点全面拷贝,这样数据量过大时,从节点压力大.还有就是海量数据时存在硬件瓶颈, 毕竟每一个机器的存储量总是有限的. ...
- Scrapy学习-9-FromRequest
用FromRequest模拟登陆知乎网站 实例 默认登陆成功以后的请求都会带上cookie # -*- coding: utf-8 -*- import re import json import d ...
- Objective-C NSString的常用用法
//1.创建常量字符串. NSString *astring = @"This is a String!"; //2.创建空字符串,给予赋值. NSString *astrin ...
- Paul Graham:梦寐以求的编程语言
我的朋友曾对一位著名的操作系统专家说他想要设计一种真正优秀的编程语言.那位专家回答,这是浪费时间,优秀的语言不一定会被市场接受,很可能无人使用,因为语言的流行不取决于它本身.至少,那位专家设计的语言就 ...
- 【IntelliJ IDEA】2017.3.4版本永久破解
[本版本软件包和破解jar在网盘上有 我的网盘--技术--idea破解所需要的] 1.idea官网下载 历史版本 选择2017.3.4版本下载 https://www.jetbrains.com ...
- BUPT复试专题—最近公共祖先(2014软院)
题目描述 给出一棵有N个节点的有根树TREE(根的编号为1),对于每组查询,请输出树上节点u和v的最近公共祖先. 最近公共祖先:对于有向树TREE的两个结点u,v.最近公共祖先LCA(TREE u,v ...
- [转]JVM堆和栈的区别
物理地址 堆的物理地址分配对对象是不连续的.因此性能慢些.在GC的时候也要考虑到不连续的分配,所以有各种算法.比如,标记-消除,复制,标记-压缩,分代(即新生代使用复制算法,老年代使用标记——压缩) ...