.NET Core 线程池(ThreadPool)底层原理浅谈
简介
上文提到,创建线程在操作系统层面有4大无法避免的开销。因此复用线程明显是一个更优的策略,切降低了使用线程的门槛,提高程序员的下限。
.NET Core线程池日新月异,不同版本实现都有差别,在.NET 6之前,ThreadPool底层由C++承载。在之后由C#承载。本文以.NET 8.0.8为蓝本,如有出入,请参考源码.
ThreadPool结构模型图

眼见为实
internal sealed partial class ThreadPoolWorkQueue
{
internal readonly ConcurrentQueue<object> workItems = new ConcurrentQueue<object>();//全局队列
internal readonly ConcurrentQueue<object> highPriorityWorkItems = new ConcurrentQueue<object>();//高优先级队列,比如Timer产生的定时任务
internal readonly ConcurrentQueue<object> lowPriorityWorkItems =
s_prioritizationExperiment ? new ConcurrentQueue<object>() : null!;//低优先级队列,比如回调
internal readonly ConcurrentQueue<object>[] _assignableWorkItemQueues =
new ConcurrentQueue<object>[s_assignableWorkItemQueueCount];//CPU 核心大于32个,全局队列会分裂为好几个,目的是降低CPU核心对全局队列的锁竞争
}
ThreadPool生产者模型

眼见为实
public void Enqueue(object callback, bool forceGlobal)
{
Debug.Assert((callback is IThreadPoolWorkItem) ^ (callback is Task));
if (_loggingEnabled && FrameworkEventSource.Log.IsEnabled())
FrameworkEventSource.Log.ThreadPoolEnqueueWorkObject(callback);
#if CORECLR
if (s_prioritizationExperiment)//lowPriorityWorkItems目前还是实验阶段,CLR代码比较偷懒,这一段代码很不优雅,没有连续性。
{
EnqueueForPrioritizationExperiment(callback, forceGlobal);
}
else
#endif
{
ThreadPoolWorkQueueThreadLocals? tl;
if (!forceGlobal && (tl = ThreadPoolWorkQueueThreadLocals.threadLocals) != null)
{
tl.workStealingQueue.LocalPush(callback);//如果没有特殊情况,默认加入本地队列
}
else
{
ConcurrentQueue<object> queue =
s_assignableWorkItemQueueCount > 0 && (tl = ThreadPoolWorkQueueThreadLocals.threadLocals) != null
? tl.assignedGlobalWorkItemQueue//CPU>32 加入分裂的全局队列
: workItems;//CPU<=32 加入全局队列
queue.Enqueue(callback);
}
}
EnsureThreadRequested();
}
细心的朋友,会发现highPriorityWorkItems的注入判断哪里去了?目前CLR对于高优先级队列只开放给内部,比如timer/Task使用
ThreadPool消费者模型

眼见为实
public object? Dequeue(ThreadPoolWorkQueueThreadLocals tl, ref bool missedSteal)
{
// Check for local work items
object? workItem = tl.workStealingQueue.LocalPop();
if (workItem != null)
{
return workItem;
}
// Check for high-priority work items
if (tl.isProcessingHighPriorityWorkItems)
{
if (highPriorityWorkItems.TryDequeue(out workItem))
{
return workItem;
}
tl.isProcessingHighPriorityWorkItems = false;
}
else if (
_mayHaveHighPriorityWorkItems != 0 &&
Interlocked.CompareExchange(ref _mayHaveHighPriorityWorkItems, 0, 1) != 0 &&
TryStartProcessingHighPriorityWorkItemsAndDequeue(tl, out workItem))
{
return workItem;
}
// Check for work items from the assigned global queue
if (s_assignableWorkItemQueueCount > 0 && tl.assignedGlobalWorkItemQueue.TryDequeue(out workItem))
{
return workItem;
}
// Check for work items from the global queue
if (workItems.TryDequeue(out workItem))
{
return workItem;
}
// Check for work items in other assignable global queues
uint randomValue = tl.random.NextUInt32();
if (s_assignableWorkItemQueueCount > 0)
{
int queueIndex = tl.queueIndex;
int c = s_assignableWorkItemQueueCount;
int maxIndex = c - 1;
for (int i = (int)(randomValue % (uint)c); c > 0; i = i < maxIndex ? i + 1 : 0, c--)
{
if (i != queueIndex && _assignableWorkItemQueues[i].TryDequeue(out workItem))
{
return workItem;
}
}
}
#if CORECLR
// Check for low-priority work items
if (s_prioritizationExperiment && lowPriorityWorkItems.TryDequeue(out workItem))
{
return workItem;
}
#endif
// Try to steal from other threads' local work items
{
WorkStealingQueue localWsq = tl.workStealingQueue;
WorkStealingQueue[] queues = WorkStealingQueueList.Queues;
int c = queues.Length;
Debug.Assert(c > 0, "There must at least be a queue for this thread.");
int maxIndex = c - 1;
for (int i = (int)(randomValue % (uint)c); c > 0; i = i < maxIndex ? i + 1 : 0, c--)
{
WorkStealingQueue otherQueue = queues[i];
if (otherQueue != localWsq && otherQueue.CanSteal)
{
workItem = otherQueue.TrySteal(ref missedSteal);
if (workItem != null)
{
return workItem;
}
}
}
}
return null;
}
什么是线程饥饿?
线程饥饿(Thread Starvation)是指线程长时间得不到调度(时间片),从而无法完成任务。
- 线程被无限阻塞
当某个线程获取锁后长期不释放,其它线程一直在等待 - 线程优先级降低
操作系统锁竞争中,高优先级线程,抢占低优先级线程的CPU时间 - 线程在等待
比如线程Wait/Result时,线程池资源不够,导致得不到执行
眼见为实
@一线码农 使用大佬的案例
https://www.cnblogs.com/huangxincheng/p/15069457.html
https://www.cnblogs.com/huangxincheng/p/17831401.html
ThreadPool如何改善线程饥饿
CLR线程池使用爬山算法来动态调整线程池的大小来来改善线程饥饿的问题。
本人水平有限,放出地址,有兴趣的同学可以自行研究
https://github.com/dotnet/runtime/blob/main/src/libraries/System.Private.CoreLib/src/System/Threading/PortableThreadPool.HillClimbing.cs
ThreadPool如何增加线程
在 PortableThreadPool 中有一个子类叫 GateThread,它就是专门用来增减线程的类
其底层使用一个while (true) 每隔500ms来轮询线程数量是否足够,以及一个AutoResetEvent来接收注入线程Event.
如果不够就新增
《CLR vir C#》 一书中,提过一句 CLR线程池每秒最多新增1~2个线程。结论的源头就是在这里
注意:是线程池注入线程每秒1~2个,不是每秒只能创建1~2个线程。OS创建线程的速度块多了。
眼见为实
眼见为实
static void Main(string[] args)
{
for (int i = 0;i<=100000;i++)
{
ThreadPool.QueueUserWorkItem((x) =>
{
Console.WriteLine($"当前线程Id:{Thread.CurrentThread.ManagedThreadId}");
Thread.Sleep(int.MaxValue);
});
}
Console.ReadLine();
}
可以观察输出,判断是不是每秒注入1~2个线程
Task
不用多说什么了吧?
Task的底层调用模型图

Task的底层实现主要取决于TaskSchedule,一般来说,除了UI线程外,默认是调度到线程池
眼见为实
Task.Run(() => { { Console.WriteLine("Test"); } });
其底层会自动调用Start(),Start()底层调用的TaskShedule.QueueTask().而作为实现类ThreadPoolTaskScheduler.QueueTask底层调用如下。

可以看到,默认情况下(除非你自己实现一个TaskShedule抽象类).Task的底层使用ThreadPool来管理。
有意思的是,对于长任务(Long Task),直接是用一个单独的后台线程来管理,完全不参与调度。
Task对线程池的优化
既然Task的底层是使用ThreadPool,而线程池注入速度是比较慢的。Task作为线程池的高度封装,有没有优化呢?
答案是Yes
当使用Task.Result时,底层会调用InternalWaitCore(),如果Task还未完成,会调用ThreadPool.NotifyThreadBlocked()来通知ThreadPool当前线程已经被阻塞,必须马上注入一个新线程来代替被阻塞的线程。
相对每500ms来轮询注入线程,该方式采用事件驱动,注入线程池的速度会更快。
眼见为实
点击查看代码
static void Main(string[] args)
{
var client = new HttpClient();
for(int i = 0; i < 100000; i++)
{
ThreadPool.QueueUserWorkItem(x =>
{
Console.WriteLine($"{DateTime.Now.ToString("yyyy-MM-dd HH:mm:ss:fff")} -> {x}: 这是耗时任务");
try
{
var content = client.GetStringAsync("https://youtube.com").Result;
Console.WriteLine(content);
}
catch (Exception)
{
throw;
}
});
}
Console.ReadLine();
}


其底层通过AutoResetEvent来触发注入线程的Event消息
.NET Core 线程池(ThreadPool)底层原理浅谈的更多相关文章
- Java8线程池ThreadPoolExecutor底层原理及其源码解析
小侃一下 日常开发中, 或许不会直接new线程或线程池, 但这些线程相关的基础或思想是非常重要的, 参考林迪效应; 就算没有直接用到, 可能间接也用到了类似的思想或原理, 例如tomcat, jett ...
- Java面试必问之线程池的创建使用、线程池的核心参数、线程池的底层工作原理
一.前言 大家在面试过程中,必不可少的问题是线程池,小编也是在面试中被问啥傻了,JUC就了解的不多.加上做系统时,很少遇到,自己也是一知半解,最近看了尚硅谷阳哥的课,恍然大悟,特写此文章记录一下!如果 ...
- jdk线程池ThreadPoolExecutor工作原理解析(自己动手实现线程池)(一)
jdk线程池ThreadPoolExecutor工作原理解析(自己动手实现线程池)(一) 线程池介绍 在日常开发中经常会遇到需要使用其它线程将大量任务异步处理的场景(异步化以及提升系统的吞吐量),而在 ...
- 深入源码分析Java线程池的实现原理
程序的运行,其本质上,是对系统资源(CPU.内存.磁盘.网络等等)的使用.如何高效的使用这些资源是我们编程优化演进的一个方向.今天说的线程池就是一种对CPU利用的优化手段. 通过学习线程池原理,明白所 ...
- Java线程池的底层实现与使用
前言 在我们进行开发的时候,为了充分利用系统资源,我们通常会进行多线程开发,实现起来非常简单,需要使用线程的时候就去创建一个线程(继承Thread类.实现Runnable接口.使用Callable和F ...
- Python之路(第四十六篇)多种方法实现python线程池(threadpool模块\multiprocessing.dummy模块\concurrent.futures模块)
一.线程池 很久(python2.6)之前python没有官方的线程池模块,只有第三方的threadpool模块, 之后再python2.6加入了multiprocessing.dummy 作为可以使 ...
- jdk调度任务线程池ScheduledThreadPoolExecutor工作原理解析
jdk调度任务线程池ScheduledThreadPoolExecutor工作原理解析 在日常开发中存在着调度延时任务.定时任务的需求,而jdk中提供了两种基于内存的任务调度工具,即相对早期的java ...
- 线程池ThreadPool的初探
一.线程池的适用范围 在日常使用多线程开发的时候,一般都构造一个Thread示例,然后调用Start使之执行.如果一个线程它大部分时间花费在等待某个事件响应的发生然后才予以响应:或者如果在一定期间内重 ...
- 高效线程池(threadpool)的实现
高效线程池(threadpool)的实现 Nodejs编程是全异步的,这就意味着我们不必每次都阻塞等待该次操作的结果,而事件完成(就绪)时会主动回调通知我们.在网络编程中,一般都是基于Reactor线 ...
- 基于C++11实现线程池的工作原理
目录 基于C++11实现线程池的工作原理. 简介 线程池的组成 1.线程池管理器 2.工作线程 3.任务接口, 4.任务队列 线程池工作的四种情况. 1.主程序当前没有任务要执行,线程池中的任务队列为 ...
随机推荐
- 一个小小空格问题引起的bug
程序员会遇到一种情况,一个bug排查到最后是由一个很小的问题导致的.在昨天的日常搬砖中遇到一个问题,耽搁了我大半天的时间,最后查明原因让我很无语. 首先介绍一下背景,我是做算法模型训练,目前手上的工作 ...
- 【GaussDB】应用报错 socket is not closed; Urgent packet sent to backend successfully; An I/O error occured while sending to the backend.detail:EOF Exception;
数据库原理差异 会话空闲时间超过sesseion_time后,数据库主动断开,客户端再发起请求,就会报此类错误: 当一个会话连接长时间没有执行SQL或者活动时,会将该会话释放,可以释放缓存避免出现例如 ...
- kafka部署配置及常用命令总结(运维必备)
kafka部署配置及常用命令总结 部署配置 1.准备部署包(自行下载) 2.配置zk vim conf/zoo.cfg dataDir=/data/vfan/zk/data/ dataLogDir=/ ...
- Gson toJson 忽略 long 为 0的数据
起因于数据id过大,所以将对应int , Integer都修改为long, 测试过程中发现 Gson toJson时,字段将int为0的数据忽略,但long 没有, 所以 1. 新增适配器 impor ...
- 互联网医疗|基于音视频SDK和即时通讯IM技术实现线上问诊功能
近期,包括北上广深在内的国内多个城市相继推动线上医保购药试点,实施进展备受网民关注. 不止于线上买药,包括健康咨询.在线问诊在内的互联网医疗服务进一步满足了人们对便捷医疗服务的需求,得到了相关政策的积 ...
- 【合合TextIn】深度解析智能文档处理技术与应用
一.智能文档处理介绍 智能文档处理(Intelligent Document Processing, IDP)是利用人工智能(AI).机器学习(ML).计算机视觉(CV).自然语言处理(NLP)等技术 ...
- ASP.NET Core Library – scriban (Template Engine)
前言 有些项目会需要让 end user 写模板 (rich text) 同时又需要做一些 data binding. 这几乎是 programmer 的工作了... 在 C#, 大可以使用 Razo ...
- Figma 学习笔记 – Scroll and Position Fixed
Scroll Scroll 属于 prototype 的一部分. 当一个 Frame 的内容超出 Frame 的高度或宽度时, Frame 就具备了 scroll 的能力. 通过 uncheck cl ...
- Python条件语句 if
语法: 示例: if elif else:
- [The Trellor] Chapter 1
翻译软件真的翻不好,读英文小说要相信你的脑子. There's only one thing to do in Berlen - that is listening the sound of wind ...

