本文介绍在Linux操作系统的发行版本Ubuntu中,配置可以用CPUGPU运行的Python新版本深度学习库tensorflow的方法。

  在文章部署CPU与GPU通用的tensorflow:Anaconda环境以及部署可使用GPU的tensorflow库中,我们已经介绍了Windows平台下,配置CPUGPU版本的tensorflow库的方法;而在本文中,我们就介绍一下在Linux Ubuntu环境中,CPUGPU版本tensorflow库的配置方法。

  本文分文两部分,第1部分为CPU版本的tensorflow库的配置方法,第2部分则为GPU版本的tensorflow库的配置方法;如果大家的电脑有GPU,那么就直接跳过第1部分,从本文的第2部分开始看起就好。需要明确的是,本文的Python版本为3.10,是一个比较新的版本;但是如果大家的Python是其他版本也没问题,整体配置的思路都是一样的。

1 CPU版本

  首先,我们介绍一下CPU版本的tensorflow库的配置方法。

  配置CPU版本的tensorflow库可以说是非常简单。首先,建议大家按照文章在Ubuntu系统安装Anaconda及Python中提及的内容,首先配置好Anaconda环境;其次,如果大家需要在虚拟环境中配置tensorflow库,那么就可以自行创建一个虚拟环境后开始后续的操作——我这里就直接在默认的环境,也就是base环境中加以配置了。

  我们可以通过在终端中输入如下的代码,查看当前Anaconda环境中的环境。

conda info -e

  运行上述代码,将得到如下图所示的情况。其中,可以看到我这里因为没有创建虚拟环境,因此就是只有一个base环境。

  随后,我们在终端中输入如下的代码,安装tensorflow库。

conda install tensorflow

  运行上述代码,我们将自动开始安装当前环境(也就是Python版本)支持的最新版本的tensorflow库;如下图所示。

  安装完毕后,就将出现如下图所示的界面。

  至此,我们就完成了CPU版本的tensorflow库的配置。我们按照文章部署可使用GPU的tensorflow库中提及的方法,在Python中输入如下的代码,检验当前tensorflow库是否支持GPU运算。

import tensorflow as tf
print(tf.config.list_physical_devices("GPU"))

  运行上述代码,如果得到如下图所示的一个空列表[],则表示当前tensorflow库并不支持GPU运算——当然这个是肯定的,我们这里配置的就是CPU版本的tensorflow库,自然是无法在GPU中加以运算了。

  至此,tensorflow库也可以正常使用了,但是他只能支持CPU运算。这里有必要提一句,其实我们通过前述方法配置的tensorflow库,其自身原理上也是支持GPU运算的——因为在Linux操作系统中,从tensorflow库的1.15版本以后,就不再区分CPUGPU版本了,只要下载了tensorflow库,那么他自身就是CPUGPU都支持的;我们目前到此为止配置的tensorflow库之所以不能在GPU中加以运行,是因为我们还没有将GPU运算需要的其他依赖项配置好(或者是电脑中完全就没有GPU)。

2 GPU版本

  接下来,我们介绍一下GPU版本的tensorflow库的配置方法。

2.1 NVIDIA Driver配置

  首先,我们需要对NVIDIA驱动程序加以配置。NVIDIA驱动程序是用于NVIDIA显卡的软件,它可以控制NVIDIA显卡的功能和性能,并确保它们与操作系统和其他软件正常配合工作。

  首先,我们可以先在终端中输入如下的代码。

nvidia-smi

  随后,正常情况下应该出现如下图所示的情况。如果大家此时出现的是其他情况,就表明要么没有安装任何NVIDIA驱动程序,要么是安装了NVIDIA驱动程序但是这一驱动的版本有问题。这里我们可以先不管,大家继续往下看即可。

  接下来,我们就开始安装NVIDIA驱动程序。其中,这里提供3种不同的方法,但是建议大家用最后一种。

2.1.1 方法一(不推荐)

  第1种方法,我们直接在终端中输入如下的代码即可。

sudo ubuntu-drivers autoinstall

  一般情况下,这一代码将会自动下载或更新我们电脑中的驱动,其中NVIDIA驱动程序也会跟着一并下载或更新。但是这一方法我尝试之后发现,并没有效果,因此这一方法应该是和大家电脑的状态有关系,不一定百分之百成功,因此并不推荐。

2.1.2 方法二(不推荐)

  第2种方法,是直接到NVIDIA驱动程序的官方网站中下载;但是这一方法比较麻烦,因此我这里也并不推荐。

  首先,我们进入NVIDIA驱动程序的官方网站,并在如下图所示的界面处,依据自己电脑中显卡的型号、电脑的系统等加以选择。

  随后,点击“搜索”选项,将会出现最合适大家的NVIDIA驱动程序,并点击“下载”即可。

  随后,大家在终端中,安装刚刚下载好的NVIDIA驱动程序即可。

2.1.3 方法三(推荐)

  第3种方法,是最为推荐的方法。

  首先,大家在终端中输入如下的代码。

ubuntu-drivers devices

  随后,将出现如下图所示的界面;其中,出现recommendedNVIDIA驱动程序版本,就是我们电脑中最合适的版本;大家此时需要记录一下这个版本号,后续需要用到。

  接下来,我们在终端中输入如下的代码。

sudo apt install nvidia-driver-525

  其中,上述代码最后的525就是我们上图中,记录下来的版本号,大家依据自己的实际情况来修改上述代码即可。运行代码后,将出现如下图所示的情况,即这一版本的NVIDIA驱动程序将开始下载与安装。

  如果大家随后的下载、安装都很顺利,那么久没事了;但是有的时候,会出现如下图所示的错误提示。

  此时,表明我们电脑中原有的NVIDIA驱动程序与新下载的版本有了冲突,导致新的版本无法正常安装。此时,我们需要在终端中,依次输入如下的代码,记得每次输入一行即可。

sudo apt-get purge nvidia*
sudo apt-get purge libnvidia*
sudo apt-get --purge remove nvidia-*
sudo dpkg --list | grep nvidia-*

  上述代码中,前3行表示删除原有的NVIDIA驱动程序及其相关内容,最后一句用来检测,原有的NVIDIA驱动程序是不是被删除干净了。如果大家出现如下图所示的情况,即输入上述最后一句代码后什么提示信息都没有出现,那么就说明原有的NVIDIA驱动程序已经删除干净了。

  此时,我们可以再执行一次如下的代码。

ubuntu-drivers devices

  但此时,和前文中不一样的是,或许可以看到出现recommendedNVIDIA驱动程序版本发生了变化,例如我这里不再是前面的525了,而是另一个版本;但是这里我们不用管这个变化,之后还是下载525版本即可。

  接下来,我们还是运行以下代码。

sudo apt install nvidia-driver-525

  其中,上述代码最后的525就是我这里的版本号,大家还是要记得修改一下。此时,我们就可以正常下载、安装指定版本的NVIDIA驱动程序了。

  此时,我们再一次在终端中输入如下的代码。

nvidia-smi

  随后,正常情况下应该出现如下图所示的情况。其中,可以留意一下下图的右上角,表示CUDA版本最高支持12.0,再新的版本就不支持了——当然,这个CUDA具体是什么,以及怎么配置,我们接下来会提到,这里就是先留意一下即可。

  还有一点需要注意,如果输入前述代码后,出现的是如下图所示的情况,那么还是说明我们此时电脑中原有的NVIDIA驱动程序与新下载的版本有了冲突,大家重新执行一下前文中删除电脑中原有的NVIDIA驱动程序的3句代码即可。

  随后,我们还可以输入如下的代码。

nvidia-settings

  如果出现如下图所示的情况,即一个新的名为“NVIDIA X Server Settings”的窗口被打开,即说明我们前述的配置没有问题。

  至此,我们完成了NVIDIA驱动程序的配置工作。

2.2 CUDA配置

  接下来,我们进行CUDA的配置;CUDANVIDIA发明的一种并行计算平台和编程模型。

  首先,我们需要到tensorflow库的官方网站中,下拉找到如下图所示的tensorflow库版本与对应的CUDAcuDNN版本匹配表格,并结合自己的Python版本,选择确定自己需要哪一个版本的tensorflow库,并进一步确定自己CUDAcuDNN的版本。其中,如下图紫色框所示,由于我这里Python版本是3.10的,因此只能选择紫色框内的版本;随后,想着用新版本的tensorflow库,因此我就选择用第一行对应的CUDAcuDNN版本了。

  随后,我们到CUDA官方网站中,首先按照如下图所示的方法,基于自己电脑的型号选择对应的内容;其中,注意最后一个选项要选择runfile (local)

  随后,网站将根据我们的选择,自动展示最新版本的CUDA。但是要注意,网站中给我们的选择,默认是最新的版本,而我们需要根据前文提到的tensorflow库版本与对应的CUDAcuDNN版本匹配表格,确定我们需要的版本。例如,如下图前3个紫色框所示,网站中给出的CUDA版本是12.1.1的,而我需要的版本是11.8的,因此就需要通过下图中“Archive of Previous CUDA Releases”选项,找到老版本的CUDA

  如下图所示,我们这里找到11.8版本的CUDA,点击即可。

  随后,将出现11.8版本的CUDA的安装方法,我们就在终端中,先后输入网站中此时展示出来的两句代码即可。

  随后,即可开始安装CUDA。其中,如果大家在安装时,出现如下图所示的提示,一般情况下是由于电脑中安装有老版本CUDA导致的;但是也不用专门去管他,选择“Continue”选项即可。

  随后,大家要注意,在如下图所示的界面中,取消选中Driver前面的叉号,从而取消NVIDIA驱动程序的安装,因为我们已经在前面安装过这个驱动了。随后,即可选择“Install”。

  接下来,我们即可开始安装CUDA,安装完毕后将会出现如下图所示的界面。

  至此,我们完成了CUDA的安装操作,但是需要进一步配置对应的环境变量。首先,在终端中输入如下的代码。

vim ~/.bashrc

  这句代码表示,我们将打开bashrc这一文件,并对其加以编辑,从而实现对环境变量的配置。运行上述代码后,我们将看到类似如下图所示的界面。

  随后,我们按下i键,开始对bashrc这一文件加以编辑。通过调整鼠标的位置,从而在bashrc文件的末尾增添如下的内容。

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda

  此时,我们将得到如下图所示的情况。

  接下来,我们首先按下Esc键退出编辑模式;接下来,输入:wq,表示保存并退出bashrc这一文件。此时,应该会出现如下图所示的界面。

  接下来,我们分别在终端中输入如下所示的两句代码。

source ~/.bashrc
nvcc --version

  其中,第一句表示更新bashrc文件,使得我们刚刚修改的环境变量立即生效;第二句则是验证CUDA安装情况的代码。如果运行以上两句代码后,出现如下图所示的界面,则表明我们的CUDA配置与环境变量配置都已经完成。

  至此,我们就完成了这一部分的配置工作。

2.3 cuDNN配置

  接下来,我们开始配置cuDNNcuDNN是一个GPU加速的深度神经网络基元库,能够以高度优化的方式实现标准例程(如前向和反向卷积、池化层、归一化和激活层)。这里还是要看一下前文提及的那个tensorflow库版本与对应的CUDAcuDNN版本匹配表格,明确我们需要下载哪一个版本的cuDNN

  首先,我们进入cuDNN官方网站;要下载cuDNN之前,我们需要先注册一下,不过注册流程也比较快,几分钟就可以完成。

  随后,我们在网站中找到对应版本的cuDNN。这里需要注意,如果我们需要的cuDNN版本并不是最新的,那么就需要在下图中“Archived cuDNN Releases”选项中找到老版本。

  我这里需要8.6版本的cuDNN,因此就需要从上图所示的位置中找到这一个版本的下载链接,并开始下载。

  下载完毕后,我们首先在终端中通过如下的命令进入下载路径;当然如果大家的下载路径不一样的话,就自行对下面这句代码加以修改即可。

cd ~/Downloads

  随后,输入如下的代码;这里需要注意,下面代码中的8.x.x.x这一部分,大家需要结合自己下载后获得安装包中具体的版本数字来修改。这一句代码的作用是启动我们本地的存储库。

sudo dpkg -i cudnn-local-repo-${OS}-8.x.x.x_1.0-1_amd64.deb

  运行上述代码,如下图所示。

  接下来,依次逐行输入如下所示的代码。其中,下面代码中的8.x.x.x这一部分,大家还是需要结合自己下载后获得安装包中具体的版本数字来修改;而同时X.Y这一部分,我们则需要根据前面选择的CUDA的版本来修改。例如,我前面下载的CUDA版本是11.8的,因此这个X.Y就是11.8。这三句代码的作用依次是:导入CUDAGPG密钥、刷新存储库的元数据、安装运行时库。

sudo cp /var/cudnn-local-repo-*/cudnn-local-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get install libcudnn8=8.x.x.x-1+cudaX.Y

  如下图第一行、第二行代码所示,就是我这里输入的上述第三句代码的具体内容。

  随后,我们继续在终端中输入如下的代码,同样记得修改自己的版本号。这句代码的作用是安装开发者库。

sudo apt-get install libcudnn8-dev=8.x.x.x-1+cudaX.Y

  如下图所示,就是我这里输入的具体内容。

  随后,我们继续在终端中输入如下的代码,同样记得修改自己的版本号。这句代码的作用是安装代码样例。

sudo apt-get install libcudnn8-samples=8.x.x.x-1+cudaX.Y

  如下图所示,就是我这里输入的具体内容。

  以上就是cuDNN的安装具体过程,接下来我们需要验证其是否安装正确。这一个验证过程稍微麻烦一些,但是其实流程也比较快。我们在终端中,依次逐行输入如下的代码即可。

cp -r /usr/src/cudnn_samples_v8/ $HOME
cd $HOME/cudnn_samples_v8/mnistCUDNN
sudo apt-get install libfreeimage3 libfreeimage-dev
make clean && make
./mnistCUDNN

  如果大家运行完上述代码后,得到如下图所示的结果,出现Test passed!这个字样,就表明我们的cuDNN也已经配置完毕。

  至此,cuDNN就已经成功配置了。

2.4 tensorflow库配置

  接下来,我们终于到了最后一步,也就是tensorflow库的配置了。

  我们在终端中,输入如下的代码即可。

pip install tensorflow

  随后,将出现如下图所示的情况。这里大家需要注意一下,大家看一下下图紫色框内的字样,如果我们此时开始下载的tensorflow库是我们需要的版本,那么就没有问题;如果是我们当前无法使用的版本(也就是和CUDAcuDNN版本不匹配的版本),那么就可以通过指定版本的方式重新下载tensorflow库。

  完成tensorflow库的配置后,我们在Python中输入如下的代码,检验当前tensorflow库是否支持GPU运算。

import tensorflow as tf
print(tf.config.list_physical_devices("GPU"))

  运行上述代码,如果得到如下图紫色框内所示的字样,则表明我们的tensorflow库已经配置完毕,且可以使用GPU加速运算了。

  至此,大功告成。

Ubuntu部署tensorflow(CPU/GPU)方法的更多相关文章

  1. TensorFlow指定CPU和GPU方法

    TensorFlow指定CPU和GPU方法 TensorFlow 支持 CPU 和 GPU.它也支持分布式计算.可以在一个或多个计算机系统的多个设备上使用 TensorFlow. TensorFlow ...

  2. ubuntu安装 tensorflow GPU

    安装支持GPU的tensorflow前提是正确安装好了 CUDA 和 cuDNN. CUDA 和 cuDNN的安装见 Nvidia 官网和各种安装教程,应该很容易,重点是要选准了支持自己GPU的 CU ...

  3. 谈谈TensorFlow with CPU support or TensorFlow with GPU support(图文详解)

    不多说,直接上干货! You must choose one of the following types of TensorFlow to install: TensorFlow with CPU ...

  4. TensorFlow指定GPU/CPU进行训练和输出devices信息

    TensorFlow指定GPU/CPU进行训练和输出devices信息 1.在tensorflow代码中指定GPU/CPU进行训练 with tf.device('/gpu:0'): .... wit ...

  5. ubuntu 18.04安装tensorflow (CPU)

    在已经安装anaconda环境及pip之后. 添加并设置pip配置文件: mkdir ~/.pip vim ~/.pip/pip.conf pip.conf文件内容: [global] index-u ...

  6. Ubuntu 16.04 TensorFlow CPU 版本安装

    1.下载Anaconda,官方网站.我下载的时Python 2.7 64bit版本: 2.安装执行命令     bash Anaconda2-4.2.0-Linux-x86_64.sh 设置好目录后等 ...

  7. ubuntu tensorflow cpu Faster-RCNN配置参考

    https://blog.csdn.net/qq_36652619/article/details/85006559     (参考) https://blog.csdn.net/zcy0xy/art ...

  8. Ubuntu16.04下安装tensorflow(GPU加速)【转】

    本文转载自:https://blog.csdn.net/qq_30520759/article/details/78947034 版权声明:本文为博主原创文章,未经博主允许不得转载. https:// ...

  9. Win10 TensorFlow(gpu)安装详解

    Win10 TensorFlow(gpu)安装详解 写在前面:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着 ...

  10. [开发技巧]·TensorFlow&Keras GPU使用技巧

    [开发技巧]·TensorFlow&Keras GPU使用技巧 ​ 1.问题描述 在使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果 ...

随机推荐

  1. 使用 HBuilderX 轻松解决 CSS 代码在一行的问题

    前言 最近在做博客园的界面美化,用的是园内大佬的开源项目,配置超级简单,只需要复制粘贴代码就好啦. 但在粘贴 CSS 代码时遇到一个问题,那就是所有代码都挤在了一行,没有一点排板的样子(如下图),对我 ...

  2. Django实战项目-学习任务系统-兑换物品管理

    接着上期代码框架,开发第5个功能,兑换物品管理,再增加一个学习兑换物品表,主要用来维护兑换物品,所需积分,物品状态等信息,还有一个积分流水表,完成任务奖励积分,兑换物品消耗积分. 要想激励一个人的学习 ...

  3. Java SE 24 新增特性

    Java SE 24 新增特性 作者:Grey 原文地址: 博客园:Java SE 24 新增特性 CSDN:Java SE 24 新增特性 源码 源仓库: Github:java_new_featu ...

  4. 对象命名为何需要避免'-er'和'-or'后缀

    之前写过两篇关于软件工程中对象命名的文章:开发中对象命名的一点思考与对象命名怎么上手?从现实世界,但感觉还是没有说透, 在软件工程中,如果问我什么最重要,我的答案是对象命名.良好的命名能够反映系统的本 ...

  5. 使用project制定项目计划可以分为六个步骤

    使用project制定项目计划可以分为六个步骤,如下图(1): 图(1)-project制定项目计划步骤 下面我们就以project2010为例,按上图所示步骤对如何制定项目计划进行详细说明: 一.创 ...

  6. 面试题-JVM性能调优

    前言 JVM性能调优是一个很大的话题,很多中小企业的业务规模受限,没有迫切的性能调优需求,但是如果不知道JVM相关的理论知识,写出来的代码或者配置的JVM参数不合理时,就会出现很严重的性能问题,到时候 ...

  7. php文件和文件夹操作类

    文件和文件夹操作 移动 | 复制 | 删除 | 重命名 | 下载 <?php namespace Framework\Tools; use PharData; class FileManager ...

  8. Java WatchService监控指定路径下的文件新增、删除和修改(子文件夹、指定文件类型)

    WatchService 是 Java NIO 包 (java.nio.file) 中提供的一个用于监控文件系统变化的 API.它允许应用程序监听目录中的文件创建.修改和删除事件. 基本原理 Watc ...

  9. "油猴脚本""篡改猴"领域的一些基本常识

    本文简要介绍本人对"油猴脚本","篡改猴"领域的一些见解,内容注定不可能一步到位和事无巨细,欢迎各位仁人志士对我批评指正,提出意见建议.另外转载前请务必注明作者 ...

  10. 【Windows】如何关闭Windows10、Windows11自动更新

    如何关闭Windows10自动更新 零.问题 Windows10老是自动更新,有时候第二天起来又得重新打开软件,真麻烦,Win10自动更新的时候还有点卡. 如何关闭? 经过上网查询,发现完全关闭难度比 ...