传送门

Solution

Code 

/*
斯坦纳树;O(n*3^n+kE*2^n) 暂且把O(k*E)当成是spfa的复杂度
15:15~16:20 原题:bzoj_4774
*/
#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
const int MN=105,MM=1005,inf=0x3f3f3f3f;
int n,m,k;
struct edge{int to,w,nex;}e[MM<<1];int hr[MN],en;
inline void ins(int f,int t,int w)
{
e[++en]=(edge){t,w,hr[f]};hr[f]=en;
e[++en]=(edge){f,w,hr[t]};hr[t]=en;
}
std::queue<int> q;
int f[1<<11][MN],g[1<<11],refer[1<<6],ans=inf;
bool inq[MN];
void spfa(int *d)
{
register int u,i;
while(!q.empty())
{
u=q.front();q.pop();inq[u]=false;
for(i=hr[u];i;i=e[i].nex)
if(d[e[i].to]>d[u]+e[i].w)
{
d[e[i].to]=d[u]+e[i].w;
if(!inq[e[i].to]) q.push(e[i].to),inq[e[i].to]=true;
}
}
}
int main()
{
register int i,j,x,y,S,SS,SSS,s;
n=read();m=read();k=read();SS=1<<k;SSS=1<<(k>>1);
while(m--)x=read(),y=read(),ins(x,y,read());
memset(f,0x3f,sizeof f);
for(i=1;i<=k;++i) f[1<<i-1][i]=0;
for(S=1;S<SS;++S)
{
for(i=1;i<=n;++i)
{
for(s=S&(S-1);s;s=(s-1)&S) f[S][i]=min(f[S][i],f[s][i]+f[S^s][i]);
if(f[S][i]<inf) q.push(i);
}
spfa(f[S]);g[S]=inf;
for(i=1;i<=n;++i) g[S]=min(g[S],f[S][i]);
}
for(i=0;i<SSS;++i)
{
s=0;
for(j=0;j<k/2;++j) if(i>>j&1) s|=1<<(j*2);
refer[i]=s|(s<<1);
}
for(S=1;S<SSS;++S)for(s=S&(S-1);s;s=(s-1)&S)
g[refer[S]]=min(g[refer[S]],g[refer[s]]+g[refer[S^s]]);
printf("%d\n",g[SS-1]);
return 0;
}
#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define int ll
const int MN=1e5+5;
int N,A[MN],w[MN],L[MN],R[MN],M;
int K[MN][350],Ll[350],Rr[350],bl,bel[MN];
int t[MN];
ll qz_a_1[350],qz_a_2[MN],sum_f[350];
void C(int x,int y){for(;x<=N;x+=(x&-x))t[x]+=y;}
int G(int x){int r=0;for(;x;x-=(x&-x))r+=t[x];return r;} struct edge{int to,nex;}e[MN<<1];int hr[MN],en,ind;
inline void Ins(int f,int t){e[++en]=(edge){t,hr[f]};hr[f]=en;}
inline void ins(int f,int t){Ins(f,t);Ins(t,f);}
inline void dfs(int x,int f)
{
register int i;L[x]=++ind;A[ind]=w[x];
for(i=hr[x];i;i=e[i].nex)if(e[i].to^f)dfs(e[i].to,x);
R[x]=ind;
}
signed main()
{
register int i,j,Q,opt,x,y,rt;
N=read();M=(int)((double)sqrt(N)+.5);Q=read();
for(i=1;i<=N;++i) w[i]=read();
for(i=1;i<=N;++i)
{
x=read();y=read();
if(!x) rt=y;
ins(x,y);
}
dfs(rt,0);
for(bl=0,i=1;i<=N;++i)
{
C(L[i],1),C(R[i]+1,-1);
if(i==N||i%M==0)
{
++bl;Rr[bl]=i;
for(j=1;j<=N;++j) K[j][bl]=G(j);
for(Ll[bl]=j=(bl-1)*M+1;j<=i;++j) bel[j]=bl,C(L[j],-1),C(R[j]+1,1);
}
}
for(i=1;i<=N;++i) qz_a_2[i]=qz_a_2[i-1]+A[i];
for(i=1;i<=bl;++i) qz_a_1[i]=qz_a_2[Rr[i]];
for(i=1;i<=N;++i) qz_a_2[i]-=qz_a_1[bel[i]-1];
#define cal(x) (qz_a_1[bel[x]-1]+qz_a_2[x])
for(i=1;i<=bl;++i)for(j=Ll[i];j<=Rr[i];++j)sum_f[i]+=cal(R[j])-cal(L[j]-1);
while(Q--)
{
opt=read(),x=read(),y=read();
if(opt==1)
{
x=L[x];y-=A[x];
for(i=bel[x];i<=bl;++i) qz_a_1[i]+=y;
for(i=x;i<=Rr[bel[x]];++i) qz_a_2[i]+=y;
for(i=1;i<=bl;++i) sum_f[i]+=1ll*y*K[x][i];
A[x]+=y;
}
if(opt==2)
{
ll ans=0;
if(bel[x]==bel[y]) for(i=x;i<=y;++i) ans+=cal(R[i])-cal(L[i]-1);
else
{
for(i=bel[x]+1;i<=bel[y]-1;++i) ans+=sum_f[i];
for(i=x;i<=Rr[bel[x]];++i) ans+=cal(R[i])-cal(L[i]-1);
for(i=Ll[bel[y]];i<=y;++i) ans+=cal(R[i])-cal(L[i]-1);
}
printf("%lld\n",ans);
}
}
#undef cal
return 0;
}
/*
每条边都有一个存在时间[l,r],每个询问相当于求一个时刻的答案
可以用线段树分治来维护
要支持操作是可逆的,所以采用按秩合并的dsu
2019/3/21 by pac
*/
#include<bits/stdc++.h>
#define ll long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
#define reg register
const int MN=7e4+5;
int N,M,ans[MN];
std::vector<int>id[MN];
struct edge{int u,v,nex,l,r;}e[MN<<1];int en,hr[MN];
void ins(int f,int t,int l,int r)
{
e[++en]=(edge){f,t,hr[f],l,r};hr[f]=en;
e[++en]=(edge){t,f,hr[t],l,r};hr[t]=en;
}
class LCA
{
int siz[MN],fa[MN],mx[MN],top[MN],dep[MN];
void dfs1(int x,int f)
{
dep[x]=dep[f]+1;fa[x]=f;siz[x]=1;reg int i;
for(i=hr[x];i;i=e[i].nex)if(e[i].v^f)
dfs1(e[i].v,x),siz[x]+=siz[e[i].v],siz[e[i].v]>siz[mx[x]]?mx[x]=e[i].v:0;
}
void dfs2(int x,int f,int tp)
{
top[x]=tp;if(mx[x])dfs2(mx[x],x,tp);reg int i;
for(i=hr[x];i;i=e[i].nex)if((e[i].v^f)&&(e[i].v^mx[x]))
dfs2(e[i].v,x,e[i].v);
}
public:
void init(){dfs1(1,0);dfs2(1,0,1);}
int dis(int x,int y)
{
if(!x||!y) return 0;
int r=dep[x]+dep[y];
for(;top[x]^top[y];) dep[top[x]]>dep[top[y]]?x=fa[top[x]]:y=fa[top[y]];
return r-2ll*min(dep[x],dep[y]);
}
}T;
struct Ans
{
int dl,dr,len;
Ans Max(const Ans &o,const Ans &oo){return o.len>oo.len?o:oo;}
Ans operator *(const Ans &o)
{
Ans r=Max(*this,o);
r=Max(r,(Ans){dl,o.dl,T.dis(dl,o.dl)});
r=Max(r,(Ans){dl,o.dr,T.dis(dl,o.dr)});
r=Max(r,(Ans){dr,o.dl,T.dis(dr,o.dl)});
r=Max(r,(Ans){dr,o.dr,T.dis(dr,o.dr)});
return r;
}
};
class DSU
{
Ans bl[MN],st_ori[MN];
int fa[MN],siz[MN],tp,st_l[MN],st_r[MN],ans;
int getf(int x){return x==fa[x]?x:getf(fa[x]);}
public:
void init()
{
tp=0;ans=0;reg int i;
for(i=1;i<=N;++i) fa[i]=i,siz[i]=1,bl[i]=(Ans){i,i,0};
}
void union_(int x,int y)
{
//if(getf(x)==19&&getf(y)==4) printf("%d %d\n",x,y);
x=getf(x);y=getf(y);
//printf("combine %d %d\n",x,y);
if(x==y) return;
if(siz[x]<siz[y]) std::swap(x,y);
siz[x]+=siz[y];st_l[++tp]=x;st_r[tp]=y;
fa[y]=x;st_ori[tp]=bl[x];bl[x]=bl[x]*bl[y];
ans=max(ans,bl[x].len);
//if(x==19&&bl[x].len==3) printf("find %d %d\n",y,bl[y].len);
}
void getori(int to,int p)
{
reg int l,r;
for(;tp>to;--tp)
{
l=st_l[tp],r=st_r[tp];
// printf("break %d %d\n",l,r);
siz[l]-=siz[r];fa[r]=r;
bl[l]=st_ori[tp];
}
ans=p;
}
int Tp(){return tp;}
int ANs(){return ans;}
// void print()
// {
// printf("Ans=%d\n",ans);
// for(int i=1;i<=20;++i) printf("%d: %d\n",i,bl[i].len);
// }
}dsu;
std::vector<int> T_ed[MN<<2];
void Md(int k,int l,int r,int a,int b)
{
if(l==a&&r==b){T_ed[k].push_back(en);return;}
int mid=(l+r)>>1;
if(b<=mid) Md(k<<1,l,mid,a,b);
else if(a>mid) Md(k<<1|1,mid+1,r,a,b);
else Md(k<<1,l,mid,a,mid),Md(k<<1|1,mid+1,r,mid+1,b);
}
void Solve(int x,int l,int r)
{
reg int pre=dsu.Tp(),i,res=dsu.ANs();
for(i=T_ed[x].size()-1;~i;--i){dsu.union_(e[T_ed[x][i]].u,e[T_ed[x][i]].v);}
if(l==r)
{
// if(l==15) dsu.print();
for(i=id[l].size()-1;~i;--i) ans[id[l][i]]=dsu.ANs();
}
if(l!=r)
{
reg int mid=(l+r)>>1;
Solve(x<<1,l,mid);Solve(x<<1|1,mid+1,r);
}
dsu.getori(pre,res);
}
int main()
{
// freopen("racing1.in","r",stdin);
// freopen("racing1.out","w",stdout);
N=read();M=read();
register int i,x,y,l,r;
for(i=1;i<N;++i)
{
x=read(),y=read();l=read(),r=read();
ins(x,y,l,r);Md(1,1,N,l,r);
// printf("%d %d %d %d\n",x,y,l,e[en].r);
}
for(i=1;i<=M;++i) id[read()].push_back(i);
T.init();dsu.init();Solve(1,1,N);
for(i=1;i<=M;++i) printf("%d\n",ans[i]);
}

Blog来自PaperCloud,未经允许,请勿转载,TKS!

FCS省选模拟赛 Day4的更多相关文章

  1. FCS省选模拟赛 Day1

    Description  Solution T1 shopping 目测是插板法乱搞一下 发现题解写的是容斥dp: \[ ans = \sum_i (-1)^ig[i] \] \(g[i]\)表示的有 ...

  2. FCS省选模拟赛 Day7

    Description  Solution T1 island 考虑把问题成两部分计算 纵坐标的距离和很好计算,在输入的同时一次计算了就完事 横坐标又分成两部分 分别在\(y\)轴不同侧的矩形的距离和 ...

  3. FCS省选模拟赛 Day3

    Description  Solution T1 game 咕咕咕 T2 string fail树各个节点的深度之和怎么求? 我们考虑每个前缀的深度是什么 发现这个值就相当于有多少个前缀等于它的后缀 ...

  4. FCS省选模拟赛 Day5

    传送门 Solution Code  #include<bits/stdc++.h> #define ll long long #define max(a,b) ((a)>(b)?( ...

  5. 省选模拟赛day4

    怎么说?发现自己越来越菜了 到了不写题解写不出来题目的地步了.. 这次题目我都有认真思考 尽管思考的时候状态不太好 但是 我想 再多给我时间也思考不出来什么吧 所以写一份题解. T1 n个点的有根树 ...

  6. 【洛谷比赛】[LnOI2019]长脖子鹿省选模拟赛 T1 题解

    今天是[LnOI2019]长脖子鹿省选模拟赛的时间,小编表示考的不怎么样,改了半天也只会改第一题,那也先呈上题解吧. T1:P5248 [LnOI2019SP]快速多项式变换(FPT) 一看这题就很手 ...

  7. @省选模拟赛03/16 - T3@ 超级树

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 一棵 k-超级树(k-SuperTree) 可按如下方法得到:取 ...

  8. 3.28 省选模拟赛 染色 LCT+线段树

    发现和SDOI2017树点涂色差不多 但是当时这道题模拟赛的时候不会写 赛后也没及时订正 所以这场模拟赛的这道题虽然秒想到了LCT和线段树但是最终还是只是打了暴力. 痛定思痛 还是要把这道题给补了. ...

  9. 省选模拟赛第四轮 B——O(n^4)->O(n^3)->O(n^2)

    一 稍微转化一下,就是找所有和原树差距不超过k的不同构树的个数 一个挺trick的想法是: 由于矩阵树定理的行列式的值是把邻接矩阵数值看做边权的图的所有生成树的边权乘积之和 那么如果把不存在于原树中的 ...

随机推荐

  1. WebSocket 转

    即时通信常用手段 1.第三方平台 谷歌.腾讯 环信等多如牛毛,其中谷歌即时通信是免费的,但免费就是免费的并不好用.其他的一些第三方一般收费的,使用要则限流(1s/限制x条消息)要么则限制用户数. 但稳 ...

  2. SharePoint中用Power shell命令修改文档的创建时间

    第一步:pnp组件连接到SharePointConnect-PnpOnline -url 网站地址 第二步:查出文档库及文档库下所有的文件 Get-PnPListItem -List 文档库名称 第三 ...

  3. webpack--splitChunksPlugin配置学习随笔

    该配置用于代码抽离.官方文档 官方默认配置: module.exports = { //... optimization: { splitChunks: { chunks: 'async', // 异 ...

  4. Solr+ik分词支持特殊符号分词

    在工具类(CharacterUtil.java)里,找到方法 identifyCharType,加入以下代码: } else if (ub == Character.UnicodeBlock.GREE ...

  5. Spring-Security-Oauth2 基于JDBC存储令牌和RBAC权限认证

    相关配置来自李哥博客:  https://funtl.com/zh/spring-security-oauth2/   (本文仅记录自己学习过程,说的不详细,可以观看李哥博客) 认证服务器和资源服务器 ...

  6. Redis锁机制的几种实现方式

    1. redis加锁分类 redis能用的的加锁命令分表是INCR.SETNX.SET 2. 第一种锁命令INCR 这种加锁的思路是, key 不存在,那么 key 的值会先被初始化为 0 ,然后再执 ...

  7. commons-io之FileUtils、IOUtils

    原文:https://blog.csdn.net/justry_deng/article/details/93616705 commons-io简单说明:Common IO 是一个工具库,用来帮助开发 ...

  8. 配置比较完善的日志 logger 的使用

    1.配置文件 log_conf.conf ################################################ ###########propagate 是否继承父类的lo ...

  9. spark-submit python egg 解决三方件依赖问题

    假设spark里用到了purl这个三方件,https://github.com/ultrabluewolf/p.url,他还额外依赖futures这个三方件(six的话,anaconda2自带). p ...

  10. k8s安装之nginx.yaml

    这里两个nginx.一个是用来测试最简单的集群的. 另一个是用来作grafana,prometheus,dashboard前端安全展示的. 简单版 apiVersion: apps/v1 kind: ...