Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Example 1:

Input: [2,4,1], k = 2
Output: 2
Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.

Example 2:

Input: [3,2,6,5,0,3], k = 2
Output: 7
Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4.
  Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.

123. Best Time to Buy and Sell Stock III 这题是最多能交易2次,而这题是最多k次。

要用动态规划Dynamic programming来解,需要两个递推公式来分别更新两个变量local和global。定义local[i][j]为在到达第i天时最多可进行j次交易并且最后一次交易在最后一天卖出的最大利润,此为局部最优。然后我们定义global[i][j]为在到达第i天时最多可进行j次交易的最大利润,此为全局最优。它们的递推式为:

local[i][j] = max(global[i - 1][j - 1] + max(diff, 0), local[i - 1][j] + diff)

global[i][j] = max(local[i][j], global[i - 1][j])

Java:

public int maxProfit(int k, int[] prices) {
int len = prices.length;
if (k >= len / 2) return quickSolve(prices); int[][] t = new int[k + 1][len];
for (int i = 1; i <= k; i++) {
int tmpMax = -prices[0];
for (int j = 1; j < len; j++) {
t[i][j] = Math.max(t[i][j - 1], prices[j] + tmpMax);
tmpMax = Math.max(tmpMax, t[i - 1][j - 1] - prices[j]);
}
}
return t[k][len - 1];
} private int quickSolve(int[] prices) {
int len = prices.length, profit = 0;
for (int i = 1; i < len; i++)
// as long as there is a price gap, we gain a profit.
if (prices[i] > prices[i - 1]) profit += prices[i] - prices[i - 1];
return profit;
}

Python:

class Solution(object):
# @return an integer as the maximum profit
def maxProfit(self, k, prices):
if k >= len(prices) / 2:
return self.maxAtMostNPairsProfit(prices) return self.maxAtMostKPairsProfit(prices, k) def maxAtMostNPairsProfit(self, prices):
profit = 0
for i in xrange(len(prices) - 1):
profit += max(0, prices[i + 1] - prices[i])
return profit def maxAtMostKPairsProfit(self, prices, k):
max_buy = [float("-inf") for _ in xrange(k + 1)]
max_sell = [0 for _ in xrange(k + 1)] for i in xrange(len(prices)):
for j in xrange(1, min(k, i/2+1) + 1):
max_buy[j] = max(max_buy[j], max_sell[j-1] - prices[i])
max_sell[j] = max(max_sell[j], max_buy[j] + prices[i]) return max_sell[k]    

C++:

class Solution {
public:
int maxProfit(int k, vector<int> &prices) {
if (prices.empty()) return 0;
if (k >= prices.size()) return solveMaxProfit(prices);
int g[k + 1] = {0};
int l[k + 1] = {0};
for (int i = 0; i < prices.size() - 1; ++i) {
int diff = prices[i + 1] - prices[i];
for (int j = k; j >= 1; --j) {
l[j] = max(g[j - 1] + max(diff, 0), l[j] + diff);
g[j] = max(g[j], l[j]);
}
}
return g[k];
}
int solveMaxProfit(vector<int> &prices) {
int res = 0;
for (int i = 1; i < prices.size(); ++i) {
if (prices[i] - prices[i - 1] > 0) {
res += prices[i] - prices[i - 1];
}
}
return res;
}
};

类似题目:

[LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

[LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

[LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III

[LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

All LeetCode Questions List 题目汇总

  

[LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV的更多相关文章

  1. [LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  2. [LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  3. LeetCode 121. Best Time to Buy and Sell Stock (买卖股票的最好时机)

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  4. [LeetCode] Best Time to Buy and Sell Stock with Cooldown 买股票的最佳时间含冷冻期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  5. Java for LeetCode 188 Best Time to Buy and Sell Stock IV【HARD】

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  6. [LeetCode] Best Time to Buy and Sell Stock IV 买卖股票的最佳时间之四

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  7. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  8. LeetCode 188. Best Time to Buy and Sell Stock IV (stock problem)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  9. 122 Best Time to Buy and Sell Stock II 买卖股票的最佳时机 II

    假设有一个数组,它的第 i 个元素是一个给定的股票在第 i 天的价格.设计一个算法来找到最大的利润.你可以完成尽可能多的交易(多次买卖股票).然而,你不能同时参与多个交易(你必须在再次购买前出售股票) ...

随机推荐

  1. metasploit 一款开源的渗透测试框架

    渗透神器漏洞利用框架metasploit from: https://zhuanlan.zhihu.com/p/30743401 metasploit是一款开源的渗透测试框架软件也是一个逐步发展与成熟 ...

  2. 使用vue-cli3搭建项目过程

    一.搭建前准备 node.js版本为8.9+: 安装模块:npm install -g n // 安装模块 这个模块是专门用来管理node.js版本的: 若原先已经安装,则更细模块:n stable ...

  3. 【NOIP2015】斗地主 D1 T3 及 增强版 (送命题)

    恶心送命模拟题 暴搜顺子,DP预处理剩下的. 由于官方数据太水,很多情况没有讨论的都能过普通版本,想要测试自己代码正确性的同学们可以交交这道题,有很多dalao给出了hack数据 : Luogu P2 ...

  4. LeetCode 958. Check Completeness of a Binary Tree

    原题链接在这里:https://leetcode.com/problems/check-completeness-of-a-binary-tree/ 题目: Given a binary tree, ...

  5. 2019.12.09 Scanner类(用户输入数据----引用数据类型)

    创建:数据类型   变量名   =   new   数据类型(): 引用:变量名.方法名(): //导包import java.util.Scanner;class Demo01{ public st ...

  6. CF 768B

    CF 768B题意:In each operation Sam must remove any element x, such that x>1, from the list and inser ...

  7. string拼接时去掉最后一个逗号

     str.replace(str.length() - 1, str.length(), "");

  8. ARC093F Dark Horse 【容斥,状压dp】

    题目链接:gfoj 神仙计数题. 可以转化为求\(p_1,p_2,\ldots,p_{2^n}\),使得\(b_i=\min\limits_{j=2^i+1}^{2^{i+1}}p_j\)都不属于\( ...

  9. 了解Python-白 驹 过 隙 , 忽 然 而 已

    白 驹 过 隙 , 忽 然 而 已 人 生 苦 短,我 用 Python -- Life is short , you need Python 代码量少,同一样问题 ,用不同的语言解决时,一般情况下P ...

  10. Alibaba Nacos:搭建Nacos平台

    1.下载安装包 https://github.com/alibaba/nacos/releases 往下翻,找到压缩包下载. 2.解压 tar -xvf nacos-server-$version.t ...