BZOJ-1042:硬币购物(背包+容斥)
题意:硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买si的价值的东西。请问每次有多少种付款方法。
思路:这么老的题,居然今天才做到...背包的复杂度是比较高的。 加上tot次询问会爆炸。能不能预处理,然后容斥得到答案呢?
先求一个完全背包,求出方案数,dp[]。
然后对于具体的询问,减去不合法的情况 。
对于c[i],它发贡献是dp[S-c[i]*(d[i]+1)];
那么会重复减,所以又加回来...
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
using namespace std;
const int maxn=;
ll dp[maxn],c[],d[],S,ans;
void dfs(int pos,int num,ll sum)
{
if(pos==){
if(sum>=) {
if(num&) ans-=dp[sum];
else ans+=dp[sum];
}
return ;
}
dfs(pos+,num+,sum-c[pos]*(d[pos]+));
dfs(pos+,num,sum);
}
int main()
{
int Q;
rep(i,,) scanf("%lld",&c[i]);
dp[]=;
rep(i,,)
rep(j,c[i],) dp[j]+=dp[j-c[i]];
scanf("%d",&Q);
while(Q--){
rep(i,,) scanf("%lld",&d[i]);
scanf("%lld",&S); ans=; dfs(,,S);
printf("%lld\n",ans);
}
return ;
}
BZOJ-1042:硬币购物(背包+容斥)的更多相关文章
- 洛谷P1450 [HAOI2008]硬币购物 背包+容斥
无限背包+容斥? 观察数据范围,可重背包无法通过,假设没有数量限制,利用用无限背包 进行预处理,因为实际硬币数有限,考虑减掉多加的部分 如何减?利用容斥原理,减掉不符合第一枚硬币数的,第二枚,依次类推 ...
- BZOJ 1042 硬币购物(背包DP+容斥原理)
可以看出这是个多重背包,运用单调队列优化可以使每次询问达到O(s).这样总复杂度为O(s*tot). 会TLE. 因为改题的特殊性,每个硬币的币值是不变的,变的只是每次询问的硬币个数. 我们不妨不考虑 ...
- BZOJ 1042 硬币购物(完全背包+DP)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1042 题意:给出四种面值的硬币c1,c2,c3,c4.n个询问.每次询问用d1.d2.d ...
- [BZOJ]1042 硬币购物(HAOI2008)
失踪OJ回归. 小C通过这道题mark一下容斥一类的问题. Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买s ...
- BZOJ1042:[HAOI2008]硬币购物(DP,容斥)
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
- BZOJ 1042 硬币购物
先不考虑限制,那么有dp[i]表示i元钱的方案数. 然后考虑限制,发现可以容斥. 其实整个题就是两个容斥原理.感觉出的蛮好的. #include<iostream> #include< ...
- Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理
Luogu-P1450 [HAOI2008]硬币购物-完全背包+容斥定理 [Problem Description] 略 [Solution] 上述题目等价于:有\(4\)种物品,每种物品有\(d_i ...
- BZOJ 1042 [HAOI2008]硬币购物(完全背包+容斥)
题意: 4种硬币买价值为V的商品,每种硬币有numi个,问有多少种买法 1000次询问,numi<1e5 思路: 完全背包计算出没有numi限制下的买法, 然后答案为dp[V]-(s1+s2+s ...
- BZOJ 1042: [HAOI2008]硬币购物( 背包dp + 容斥原理 )
先按完全背包做一次dp, dp(x)表示x元的东西有多少种方案, 然后再容斥一下. ---------------------------------------------------------- ...
- P1450 [HAOI2008]硬币购物(完全背包+容斥)
P1450 [HAOI2008]硬币购物 暴力做法:每次询问跑一遍多重背包. 考虑正解 其实每次跑多重背包都有一部分是被重复算的,浪费了大量时间 考虑先做一遍完全背包 算出$f[i]$表示买价值$i$ ...
随机推荐
- 《Linux就该这么学》培训笔记_ch06_存储结构与磁盘划分
<Linux就该这么学>培训笔记_ch06_存储结构与磁盘划分 文章最后会post上书本的笔记照片. 文章主要内容: Linux系统的文件存储结构(FHS标准) 物理设备命名规则(udev ...
- 《Linux就该这么学》培训笔记_ch19_使用PXE+Kickstart无人值守安装服务
<Linux就该这么学>培训笔记_ch19_使用PXE+Kickstart无人值守安装服务 文章最后会post上书本的笔记照片. 文章主要内容: 无人值守系统 部署相关服务程序 配置DHC ...
- Zookeeper connection loss leads to Flink job restart
Flink可以使用zookeeper来进行ha,而一般我们都会使用zookeeper的高级api架构curator来对zk进行通讯.在curator中引入了状态的概念,包括connected,reco ...
- 开发dubbo应用程序(一)入门demo详解
1.简介: 引用自Dubbo官方文档简介: http://dubbo.apache.org/zh-cn/docs/user/dependencies.html 随着互联网的发展,网站应用的规模不断扩大 ...
- ubuntu开发常用收集
命令: 1.http://blog.csdn.net/simongeek/article/details/45271089 2.http://www.jianshu.com/p/654be9c0f13 ...
- Winows上简单配置使用kafka(.net使用)
一.kafka环境配置 1.jdk安装 安装文件:http://www.oracle.com/technetwork/java/javase/downloads/index.html 下载JDK安装完 ...
- Python基础之time、os模块
1.时间模块 1)模块 python安装好之后,会有一些默认模块,我们称之为标准库,标准库中的模块python自带,无需安装. 除了标准库,还有一个第三方库,可以通过pip来安装,不同的库有不同的功能 ...
- spark过滤算子+StringIndexer算子出发的一个逻辑bug
问题描述: 在一段spark机器学习的程序中,同时用到了Filter算子和StringIndexer算子,其中StringIndexer在前,filter在后,并且filter是对stringinde ...
- vue组件6 使用vue添加样式
class绑定,内联样式 数组语法 :class="[stylename]" js:data{stylename:classname} 对象语法:class={stylena ...
- Java 流程控制语句 之 顺序结构
在一个程序执行的过程中,各条语句的执行顺序对程序的结果是有直接影响的.也就是说,程序的流程对运行结果 有直接的影响.所以,我们必须清楚每条语句的执行流程.而且,很多时候我们要通过控制语句的执行顺序来实 ...