堆化

给出一个整数数组,堆化操作就是把它变成一个最小堆数组。

对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[i]的右儿子。

说明

什么是堆?

  • 堆是一种数据结构,它通常有三种方法:push, pop 和 top。其中,“push”添加新的元素进入堆,“pop”删除堆中最小/最大元素,“top”返回堆中最小/最大元素。

什么是堆化?

  • 把一个无序整数数组变成一个堆数组。如果是最小堆,每个元素A[i],我们将得到A[i * 2 + 1] >= A[i]和A[i * 2 + 2] >= A[i]

如果有很多种堆化的结果?

  • 返回其中任何一个

给出 [3,2,1,4,5],返回[1,2,3,4,5] 或者任何一个合法的堆数组

解题

根据给的样例,直接排序后就符合答案。

public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
// write your code here
Arrays.sort(A);
}
}

参考链接

递归进行堆排序

public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
// write your code here
for(int i = (A.length - 1)/2;i>=0;i--)
heapify(A,i);
}
public void heapify(int[] A,int i){
int l = 2*i + 1;
int r = 2*i + 2;
int smallest = i;
if(l < A.length && A[l] < A[smallest])
smallest = l;
if( r < A.length && A[r] < A[smallest])
smallest = r;
if(smallest!=i){
int tmp = A[i];
A[i] = A[smallest];
A[smallest] = tmp;
heapify(A,smallest);
}
}
}

lintcode: 堆化的更多相关文章

  1. 为什么堆化 heapify() 只用 O(n) 就做到了?

    heapify() 前面两篇文章介绍了什么是堆以及堆的两个基本操作,但其实呢,堆还有一个大名鼎鼎的非常重要的操作,就是 heapify() 了,它是一个很神奇的操作, 可以用 O(n) 的时间把一个乱 ...

  2. lintcode-130-堆化

    130-堆化 给出一个整数数组,堆化操作就是把它变成一个最小堆数组. 对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[ ...

  3. lintcode算法周竞赛

    ------------------------------------------------------------第七周:Follow up question 1,寻找峰值 寻找峰值 描述 笔记 ...

  4. [数据结构]——堆(Heap)、堆排序和TopK

    堆(heap),是一种特殊的数据结构.之所以特殊,因为堆的形象化是一个棵完全二叉树,并且满足任意节点始终不大于(或者不小于)左右子节点(有别于二叉搜索树Binary Search Tree).其中,前 ...

  5. 最小堆实现优先队列:Python实现

    最小堆实现优先队列:Python实现 堆是一种数据结构,因为Heapsort而被提出.除了堆排序,“堆”这种数据结构还可以用于优先队列的实现. 堆首先是一个完全二叉树:它除了最底层之外,树的每一层的都 ...

  6. heapsort(Java)(最小堆)

    public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextI ...

  7. 索引堆(Index Heap)

    首先我们先来看一个由普通数组构建的普通堆. 然后我们通过前面的方法对它进行堆化(heapify),将其构建为最大堆. 结果是这样的: 对于我们所关心的这个数组而言,数组中的元素位置发生了改变.正是因为 ...

  8. Python 堆与堆排序

    堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先讲解下什么是数据结构中的二叉堆. 二叉堆的定义 二叉堆是完全二叉树或者是近似完全二叉树. 二叉堆满足 ...

  9. 数据结构——堆(Heap)大根堆、小根堆

    目录 Heap是一种数据结构具有以下的特点: 1)完全二叉树: 2)heap中存储的值是偏序: Min-heap: 父节点的值小于或等于子节点的值: Max-heap: 父节点的值大于或等于子节点的值 ...

随机推荐

  1. SQL Server2008 无法连接到 local

    以下这种情况: 第一步:检查是否选择的数据库引擎,然后实例名字是否正确,直接写的(local)或者打的"."号.换成电脑的计算机名字或者IP. 第二步:SQLserver配置远程连 ...

  2. Scrum仪式之Sprint计划会议

    会议时间:4.15.晚八点 会议地点:基础教学楼二楼 会议进程 • 首先我们讨论了实验第一个Sprint1要实现的功能,我们的初期目标.•  然后我们进一步梳理了第一阶段的任务和需求.•  之后对任务 ...

  3. 10、android学习资源整理

    1.github上整理好的开源工程 https://github.com/Trinea/android-open-project 2.最流行的android组件大全 http://colobu.com ...

  4. 二分--1043 - Triangle Partitioning

    1043 - Triangle Partitioning PDF (English) Statistics Forum Time Limit: 0.5 second(s) Memory Limit:  ...

  5. shell编程之分隔符

    1 #!/bin/bash 2 line="root:x:0:0:root:/root:bin/bash" 3 oldIFS=$IFS 4 IFS=":" 5 ...

  6. VSS

    A deleted file of the same name already exists in this VSS project. Do you want to recover the delet ...

  7. 在linux下安装eclipse 开发c语言程序

    一,下载jdk tar -xvzf jdk-8u45-linux-x64.tar.gz  //解压并安装jdk 二,修改环境配置变量 vim /home/woshareliu/.bashrc 加入如下 ...

  8. URAL1018 Binary Apple Tree(树dp)

    组队赛的时候的一道题,那个时候想了一下感觉dp不怎么好写呀,现在写了出来,交上去过了,但是我觉得我还是应该WA的呀,因为总感觉dp的不对. #pragma warning(disable:4996) ...

  9. codeforces 425A Sereja and Swaps(模拟,vector,枚举区间)

    题目 这要学习的是如何枚举区间,vector的基本使用(存入,取出,排序等),这题的思路来自: http://www.tuicool.com/articles/fAveE3 //vector 可以用s ...

  10. iOS-CAEmitterLayer(粒子效果)

    扩展:https://github.com/lichtschlag/Dazzle  ;     , , , ); , );     .f;     .f;     ;     .f;     .f; ...