堆化

给出一个整数数组,堆化操作就是把它变成一个最小堆数组。

对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[i]的右儿子。

说明

什么是堆?

  • 堆是一种数据结构,它通常有三种方法:push, pop 和 top。其中,“push”添加新的元素进入堆,“pop”删除堆中最小/最大元素,“top”返回堆中最小/最大元素。

什么是堆化?

  • 把一个无序整数数组变成一个堆数组。如果是最小堆,每个元素A[i],我们将得到A[i * 2 + 1] >= A[i]和A[i * 2 + 2] >= A[i]

如果有很多种堆化的结果?

  • 返回其中任何一个

给出 [3,2,1,4,5],返回[1,2,3,4,5] 或者任何一个合法的堆数组

解题

根据给的样例,直接排序后就符合答案。

public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
// write your code here
Arrays.sort(A);
}
}

参考链接

递归进行堆排序

public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
// write your code here
for(int i = (A.length - 1)/2;i>=0;i--)
heapify(A,i);
}
public void heapify(int[] A,int i){
int l = 2*i + 1;
int r = 2*i + 2;
int smallest = i;
if(l < A.length && A[l] < A[smallest])
smallest = l;
if( r < A.length && A[r] < A[smallest])
smallest = r;
if(smallest!=i){
int tmp = A[i];
A[i] = A[smallest];
A[smallest] = tmp;
heapify(A,smallest);
}
}
}

lintcode: 堆化的更多相关文章

  1. 为什么堆化 heapify() 只用 O(n) 就做到了?

    heapify() 前面两篇文章介绍了什么是堆以及堆的两个基本操作,但其实呢,堆还有一个大名鼎鼎的非常重要的操作,就是 heapify() 了,它是一个很神奇的操作, 可以用 O(n) 的时间把一个乱 ...

  2. lintcode-130-堆化

    130-堆化 给出一个整数数组,堆化操作就是把它变成一个最小堆数组. 对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[ ...

  3. lintcode算法周竞赛

    ------------------------------------------------------------第七周:Follow up question 1,寻找峰值 寻找峰值 描述 笔记 ...

  4. [数据结构]——堆(Heap)、堆排序和TopK

    堆(heap),是一种特殊的数据结构.之所以特殊,因为堆的形象化是一个棵完全二叉树,并且满足任意节点始终不大于(或者不小于)左右子节点(有别于二叉搜索树Binary Search Tree).其中,前 ...

  5. 最小堆实现优先队列:Python实现

    最小堆实现优先队列:Python实现 堆是一种数据结构,因为Heapsort而被提出.除了堆排序,“堆”这种数据结构还可以用于优先队列的实现. 堆首先是一个完全二叉树:它除了最底层之外,树的每一层的都 ...

  6. heapsort(Java)(最小堆)

    public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextI ...

  7. 索引堆(Index Heap)

    首先我们先来看一个由普通数组构建的普通堆. 然后我们通过前面的方法对它进行堆化(heapify),将其构建为最大堆. 结果是这样的: 对于我们所关心的这个数组而言,数组中的元素位置发生了改变.正是因为 ...

  8. Python 堆与堆排序

    堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先讲解下什么是数据结构中的二叉堆. 二叉堆的定义 二叉堆是完全二叉树或者是近似完全二叉树. 二叉堆满足 ...

  9. 数据结构——堆(Heap)大根堆、小根堆

    目录 Heap是一种数据结构具有以下的特点: 1)完全二叉树: 2)heap中存储的值是偏序: Min-heap: 父节点的值小于或等于子节点的值: Max-heap: 父节点的值大于或等于子节点的值 ...

随机推荐

  1. bootstrap bootstrapTable 隐藏列

    主要代码: <script type="text/javascript"> $(function () { LoadingDataListOrderRealItems( ...

  2. flask环境配置

    1.首先要看装python环境,最好是python 2.7版本的: 2.安装easy_install,至今也不确定这个东西是怎么装的,我先下载了一个ez_setup,用命令“python ez_set ...

  3. licens 问题 Error (292028): Specified license is not valid for this machine

    集成网卡调试的时候坏了,造成了quartus 不可以用,MAC地址不对应了... 应该怎么解决呢??.

  4. vs2013中把解决方案上传到SVN服务器

    在VS2013中直接上传代码到SVN服务器,在这之前,必须是你的电脑已经安装了TortoiseSVN. 其次,VS2013必须安装AnkhSVN插件.然后才可以向我下面所述一样使用TortoiseSV ...

  5. STL之multimap

    参见http://www.cplusplus.com/reference/map/multimap/ 多重映射multimap和map映射很相似,但是multimap允许重复的关键字,这使得multi ...

  6. Log4Net学习【二】

    Log4Net结构详解 当我们在描述为系统做日志这个动作的时候,实际上描述了3个点:做日志,其实就是在规定,在什么地方 用什么日志记录器 以什么样的格式做日志.把三个最重要的点抽取出来,即什么地方,日 ...

  7. cacti手册选译(1)

    第一章 系统需求 Cacti需要你的系统安装一下软件: RRDTool版本1.0.49及以上,推荐1.4+ MYSQL5.x及以上版本 PHP5.1及以上 支持PHP的web Server如Apach ...

  8. DataTable分组归类

    我们在做项目的时候,经常需要根据表或DataTable中某些字段来归类,为此就写出以下方法,帮组需要的人. #region 对DataTable进行分组 + public void GroupData ...

  9. android 通过httpclient下载文件并保存

    代码:(主要针对图片.gif下载无问题) /** * 下载网络文件 * @param url 请求的文件链接 * @param IsMD5Name 是否MD5加密URL来命名文件名 * @param ...

  10. hdu 4193 Non-negative Partial Sums

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4193 题意:给出一个n数列,要求把前i(1<=i<=n)个数移到剩余数列的后面形成新的数列 ...