lintcode: 堆化
堆化
给出一个整数数组,堆化操作就是把它变成一个最小堆数组。
对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[i]的右儿子。
什么是堆?
- 堆是一种数据结构,它通常有三种方法:push, pop 和 top。其中,“push”添加新的元素进入堆,“pop”删除堆中最小/最大元素,“top”返回堆中最小/最大元素。
什么是堆化?
- 把一个无序整数数组变成一个堆数组。如果是最小堆,每个元素A[i],我们将得到A[i * 2 + 1] >= A[i]和A[i * 2 + 2] >= A[i]
如果有很多种堆化的结果?
- 返回其中任何一个
给出 [3,2,1,4,5]
,返回[1,2,3,4,5]
或者任何一个合法的堆数组
解题
根据给的样例,直接排序后就符合答案。
public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
// write your code here
Arrays.sort(A);
}
}
递归进行堆排序
public class Solution {
/**
* @param A: Given an integer array
* @return: void
*/
public void heapify(int[] A) {
// write your code here
for(int i = (A.length - 1)/2;i>=0;i--)
heapify(A,i);
}
public void heapify(int[] A,int i){
int l = 2*i + 1;
int r = 2*i + 2;
int smallest = i;
if(l < A.length && A[l] < A[smallest])
smallest = l;
if( r < A.length && A[r] < A[smallest])
smallest = r;
if(smallest!=i){
int tmp = A[i];
A[i] = A[smallest];
A[smallest] = tmp;
heapify(A,smallest);
}
}
}
lintcode: 堆化的更多相关文章
- 为什么堆化 heapify() 只用 O(n) 就做到了?
heapify() 前面两篇文章介绍了什么是堆以及堆的两个基本操作,但其实呢,堆还有一个大名鼎鼎的非常重要的操作,就是 heapify() 了,它是一个很神奇的操作, 可以用 O(n) 的时间把一个乱 ...
- lintcode-130-堆化
130-堆化 给出一个整数数组,堆化操作就是把它变成一个最小堆数组. 对于堆数组A,A[0]是堆的根,并对于每个A[i],A [i * 2 + 1]是A[i]的左儿子并且A[i * 2 + 2]是A[ ...
- lintcode算法周竞赛
------------------------------------------------------------第七周:Follow up question 1,寻找峰值 寻找峰值 描述 笔记 ...
- [数据结构]——堆(Heap)、堆排序和TopK
堆(heap),是一种特殊的数据结构.之所以特殊,因为堆的形象化是一个棵完全二叉树,并且满足任意节点始终不大于(或者不小于)左右子节点(有别于二叉搜索树Binary Search Tree).其中,前 ...
- 最小堆实现优先队列:Python实现
最小堆实现优先队列:Python实现 堆是一种数据结构,因为Heapsort而被提出.除了堆排序,“堆”这种数据结构还可以用于优先队列的实现. 堆首先是一个完全二叉树:它除了最底层之外,树的每一层的都 ...
- heapsort(Java)(最小堆)
public static void main(String[] args) { Scanner input = new Scanner(System.in); int n = input.nextI ...
- 索引堆(Index Heap)
首先我们先来看一个由普通数组构建的普通堆. 然后我们通过前面的方法对它进行堆化(heapify),将其构建为最大堆. 结果是这样的: 对于我们所关心的这个数组而言,数组中的元素位置发生了改变.正是因为 ...
- Python 堆与堆排序
堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先讲解下什么是数据结构中的二叉堆. 二叉堆的定义 二叉堆是完全二叉树或者是近似完全二叉树. 二叉堆满足 ...
- 数据结构——堆(Heap)大根堆、小根堆
目录 Heap是一种数据结构具有以下的特点: 1)完全二叉树: 2)heap中存储的值是偏序: Min-heap: 父节点的值小于或等于子节点的值: Max-heap: 父节点的值大于或等于子节点的值 ...
随机推荐
- 33.allegro中Autosilk top, Silkscreen top 和Assembly top三个什么区别(转)
Autosilk top, Silkscreen top 和Assembly top Autosilk top:最后出gerber的时候,自动生成的丝印层.会自动调整丝印位置,以及碰到阻焊开窗的地方, ...
- QT 按钮类继承处理带定时器
01.class KeyButton : public QPushButton 02.{ 03. Q_OBJECT 04.public: 05. explicit KeyButto ...
- Java-包
定义包用package关键字. 1:对类文件进行分类管理. 2:给类文件提供多层名称空间. 如果生成的包不在当前目录下,需要最好执行classpath,将包所在父目录定义到classpath变量中即可 ...
- 【BZOJ 1997】[Hnoi2010]Planar
Description Input Output 找到哈密尔顿环之后找到不在哈密尔顿环上的边 这些边如果同时在里面相交那他们同时在外面也相交,所以只能一外一内,这就变成了2-SAT,判一下就好了 ...
- 从浅到深掌握Oracle的锁
1.分别模拟insert,update和delete造成阻塞的示例,并对v$lock中的相应的信息进行说明,给 出SQL演示. Insert示例 会话:SQL> select * from ...
- java web.xml配置详解(转)
源出处:java web.xml配置详解 1.常规配置:每一个站的WEB-INF下都有一个web.xml的设定文件,它提供了我们站台的配置设定. web.xml定义: .站台的名称和说明 .针对环境参 ...
- NABC的特点分析
题目: 请把采用卡片分类的方法讨论你们的团队开发项目特点,再按照 NABC 的框架分析每个特点. 每一个组员针对其中的一个特点将NABC的分析结果发表博 ...
- 百度地图之POI
// // PoiViewController.m // baiDuDemo // // Created by City--Online on 15/6/4. // Copyright (c) 201 ...
- printf的一个常用技巧
acm 的题目经常要求输出最后面一位不能有空格: 用if语句显得代码难看: 实现如下: int a[5]={1,2,3,4,5}; for(int i=0;i<=4;i++) printf(&q ...
- 【BZOJ】【3004】吊灯
思路题 要将整棵树分成大小相等的连通块,那么首先我们可以肯定的是每块大小x一定是n的约数,且恰好分成$\frac{n}{x}$块,所以我有了这样一个思路:向下深搜,如果一个节点的size=x,就把这个 ...