1 回忆:    $$\bex    \lim_{n\to\infty}a_n=a\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbox{ 有 }|a_n-a|<\ve.    \eex$$

$\bbR$ 中有 ``距离'' (可以衡量两数的接近程度, 这里是绝对值) 的概念.

2 拓广: 设 $X$ 是一个集合, $d:X\times X\to [0,\infty)$ 满足

(1) 正定性 (positivity): $d(x,y)\geq 0$, $d(x,y)=0\lra x=y$;

(2) 对称性 (symmetry): $d(x,y)=d(y,x)$;

(3) 三角不等式 (triangle inequality): $d(x,y)\leq d(x,z)+d(z,y)$;

则称 $d$ 为 $X$ 上的一个距离 (distance),

$(X,d)$ 称为度量空间 (metric space).

3 对称性 $+$ 三角不等式 $\lra$ $d(x,y)\leq d(x,z)+d(y,z)$.

证明: $ra$ 显然.

$\la$ 取 $z=x$, 有 $$\bex d(x,y)\leq d(x,x)+d(y,x)\ra d(x,y)\leq d(y,x). \eex$$

互换 $x,y$ 的位置而得 $d(x,y)=d(y,x)$.

4 若 $(X,d)$ 是度量空间, $\vno \neq Y\subset X$, 则 $(Y,d)$ 于是度量空间, 称为 $(X,d)$ 的子

空间.

5 例: 在 $\bbR^n$ 中, 对    $$\bex    x=(x_1,\cdots,x_n),\quad y=(y_1,\cdots,y_n),    \eex$$

定义    $$\bex    d(x,y)=\sez{\sum_{i=1}^n (x_i-y_i)^2}^{1/2},    \eex$$

则 $(\bbR^n,d)$ 为度量空间, 称为 $n$ 维 Euclidean 空间, $d$ 称为 Euclidean 距离.

6 邻域、极限及其他.

(1) $U(P_0,\delta)=U(P_0)=\sed{P; d(P,P_0)<\delta}$.

(2) $$\bex \lim_{n\to\infty}P_n=P_0\lra \forall\ \ve>0,\ \exists\ N,\ \forall\ n\geq N,\mbox{ 有 }P_n\in U(P_0,\ve). \eex$$

(3) $$\bex d(A,B)=\inf_{P\in A,Q\in B}d(P,Q);\quad diam(E)=\sup_{P\in E,Q\in E}d(P,Q). \eex$$

(4) $$\beex \bea E\mbox{ 有界}&\lra diam(E)<\infty\\    &\lra \exists\ R>0,\ \forall\ x\in E,\ d(x,0)<R. \eea \eeex$$

(5) $n$ 为开、闭区间为 $$\bex \prod_{i=1}^n (a_i,b_i),\quad \prod_{i=1}^n [a_i,b_i], \eex$$

它们都有 ``体积'' $\dps{\prod_{i=1}^n (b_i-a_i)}$.

[实变函数]2.1 度量空间 (metric space), $n$ 维 Euclidean 空间的更多相关文章

  1. n维立体空间建模

    n维立体空间建模,基于网格技术,将整个地球信息整体封装,初始进行网格化,选取某一个网格,进行迭代,    迭代的子项依然是网格,迭代的次数为k,网格最终大小可以指定,这种指定决定了立体块的细化率,假设 ...

  2. Metric space,open set

    目录 引入:绝对值 度量空间 Example: 开集,闭集 引入:绝对值 distance\(:|a-b|\) properties\(:(1)|x| \geq 0\),for all \(x \in ...

  3. 论文笔记:(NIPS2017)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

    目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(fea ...

  4. 关于n维和n-1维欧式空间

    我们从小就说,"点动成线,线动成面,面动成体",其中的空间的概念到底是啥?之前没有好好想过,在机器学习中多次遇到"空间"."超平面",&qu ...

  5. Gram 矩阵与向量到子空间的距离

    设 $W$ 是 $n$ 维 Euclidean 空间 $V$ 的子空间, $\beta\in V$, 定义 $\beta$ 到 $W$ 的距离  $$\bex  \rd (\beta,W)=|\bet ...

  6. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  7. 【转载】VC维的来龙去脉

    本文转载自 火光摇曳 原文链接:VC维的来龙去脉 目录: 说说历史 Hoeffding不等式 Connection to Learning 学习可行的两个核心条件 Effective Number o ...

  8. 机器学习基石的泛化理论及VC维部分整理(第五讲)

    第五讲 Training versus Testing 一.问题的提出 \(P_{\mathcal{D}}\left [ BAD   \mathcal{D} \right ]  \leq 2M \cd ...

  9. c中使用malloc动态申请二维数组

    前言 今天写代码的时候,想要动态的申请一个二维数组空间,思索了一段时间才写出来,这里记录一下吧,以后就不至于再浪费时间了.下面以申请int型数组作为例子: 申请一维数组 一维数组的数组名可以看成数组起 ...

随机推荐

  1. HDU-4089 Activation (概率DP求概率)

    题目大意:一款新游戏注册账号时,有n个用户在排队.每处理一个用户的信息时,可能会出现下面四种情况: 1.处理失败,重新处理,处理信息仍然在队头,发生的概率为p1: 2.处理错误,处理信息到队尾重新排队 ...

  2. Promise 学习笔记

    所谓Promise,简单说就是一个容器,里面保存着某个未来才会结束的事件(通常是一个异步操作)的结果.从语法上说,Promise是一个对象,从它可以获取异步操作的消息.Promise提供统一的API, ...

  3. SPI相位跟极性介绍

    [详解]SPI中的极性CPOL和相位CPHA是什么以及如何设置   2012-03-0214:34:10|  分类:单片机 |  标签: |字号大中小 订阅 版本:2011-08-15 作者:crif ...

  4. NetStatusEvent info对象的状态或错误情况的属性

      代码属性 级别属性 意义 "NetStream.Buffer.Empty" "status"  数据的接收速度不足以填充缓冲区.数据流将在缓冲区重新填充前中 ...

  5. 模仿ViewPager控件

    自定义控件是开发中经常使用的技术.系统中自带的ViewPager实现的功能有时候不能满足开发的需要,如ViewPager没有滑动图片时的动画切换效果.通过对 ViewPager的模仿和部分功能的加强, ...

  6. Linux查看端口使用状态、关闭端口方法

    前提:首先你必须知道,端口不是独立存在的,它是依附于进程的.某个进程开启,那么它对应的端口就开启了,进程关闭,则该端口也就关闭了.下次若某个进程再次开启,则相应的端口也再次开启.而不要纯粹的理解为关闭 ...

  7. SHOW OPEN TABLES – what is in your table cache

    One command, which few people realize exists is SHOW OPEN TABLES – it allows you to examine what tab ...

  8. Linux进程间通信-匿名管道

    前面我们讲了进程间通信的一种方式,共享内存.下面看一看另一种机制,匿名管道.1.什么是管道管道是一个进程的数据流到另一个进程的通道,即一个进程的数据输出作为另一个进程的数据输入,管道起到了桥梁的作用. ...

  9. WCF入门教程四[WCF的配置文件]

    一.概述 配置也是WCF编程中的主要组成部分.在 以往的.net应用程序中,我们会把DBConn和一些动态加载类及变量写在配置文件里.但WCF有所不同.他指定向客户端公开的服务,包括服务的地址. 服务 ...

  10. Visual Studio 文件没发布出来

    解决办法是选择文件打开属性窗口找到生成操作,选项选择"内容",重新发布,OK,问题解决.