Description

There are N beads which of the same shape and size, but with different weights. N is an odd number and the beads are labeled as 1, 2, ..., N. Your task is to find the bead whose weight is median (the ((N+1)/2)th among all beads). The following comparison has been performed on some pairs of beads: 
A scale is given to compare the weights of beads. We can determine which one is heavier than the other between two beads. As the result, we now know that some beads are heavier than others. We are going to remove some beads which cannot have the medium weight.

For example, the following results show which bead is heavier after M comparisons where M=4 and N=5.

1.	Bead 2 is heavier than Bead 1.

2. Bead 4 is heavier than Bead 3.

3. Bead 5 is heavier than Bead 1.

4. Bead 4 is heavier than Bead 2.

From the above results, though we cannot determine exactly which is the median bead, we know that Bead 1 and Bead 4 can never have the median weight: Beads 2, 4, 5 are heavier than Bead 1, and Beads 1, 2, 3 are lighter than Bead 4. Therefore, we can remove these two beads.

Write a program to count the number of beads which cannot have the median weight.

Input

The first line of the input file contains a single integer t (1 <= t <= 11), the number of test cases, followed by the input data for each test case. The input for each test case will be as follows: 
The first line of input data contains an integer N (1 <= N <= 99) denoting the number of beads, and M denoting the number of pairs of beads compared. In each of the next M lines, two numbers are given where the first bead is heavier than the second bead. 

Output

There should be one line per test case. Print the number of beads which can never have the medium weight.

Sample Input

1
5 4
2 1
4 3
5 1
4 2

Sample Output

2

【题意】给出t个例子,有n个形状相同的bead,给出m个他们之间的轻重情况,找出不可能是中间质量的bead的数量

【思路】将轻重情况看成是一个有向图,i重于j就说明i到j有一条边,若i能到超过n/2个点或者i能被超过n/2个点到达,就说明i不是中间质量的bead

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=;
int n,m;
int mp[N][N];
void floyd()
{
for(int k=;k<=n;k++)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(mp[i][k]==&&mp[k][j]==)
mp[i][j]=;
if(mp[i][k]==-&&mp[k][j]==-)
mp[i][j]=-;
}
}
} }
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(mp,,sizeof(mp));
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
mp[a][b]=;
mp[b][a]=-;
}
floyd();
int ans=;
for(int i=;i<=n;i++)
{
int l=,r=;
for(int j=;j<=n;j++)
{
if(mp[i][j]==)
r++;
else if(mp[i][j]==-)
l++;
}
if(r>n/||l>n/)
ans++;
}
printf("%d\n",ans);
}
return ;
}

Median Weight Bead_floyd的更多相关文章

  1. POJ1975 Median Weight Bead floyd传递闭包

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

  2. POJ-1975 Median Weight Bead(Floyed)

    Median Weight Bead Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3162 Accepted: 1630 De ...

  3. 珍珠 Median Weight Bead 977

    描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...

  4. Median Weight Bead(最短路—floyed传递闭包)

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

  5. POJ 1975 Median Weight Bead

    Median Weight Bead Time Limit: 1000ms Memory Limit: 30000KB This problem will be judged on PKU. Orig ...

  6. poj 1975 Median Weight Bead(传递闭包 Floyd)

    链接:poj 1975 题意:n个珠子,给定它们之间的重量关系.按重量排序.求确定肯定不排在中间的珠子的个数 分析:由于n为奇数.中间为(n+1)/2,对于某个珠子.若有至少有(n+1)/2个珠子比它 ...

  7. 第十届山东省赛L题Median(floyd传递闭包)+ poj1975 (昨晚的课程总结错了,什么就出度出度,那应该是叫讨论一个元素与其余的关系)

    Median Time Limit: 1 Second Memory Limit: 65536 KB Recall the definition of the median of elements w ...

  8. 别人整理的DP大全(转)

    动态规划 动态规划 容易: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ...

  9. [转] POJ DP问题

    列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...

随机推荐

  1. jquery添加的html元素按钮为什么不执行类样式绑定的click事件

    代码举例: 更多按钮: <input type="button" class="addMore" id="addMore${issue.id } ...

  2. MySql与SqlServer的一些常用用法的差别

    MySql与SqlServer的一些常用用法的差别 本文为转载 本文将主要列出MySql与SqlServer不同的地方,且以常用的存储过程的相关内容为主. 1. 标识符限定符 SqlServer [] ...

  3. 读取DBF文件的部分代码

    private void BtnOpenInitial_Click(object sender, EventArgs e) { OpenFileDialog file = new OpenFileDi ...

  4. 什么是 Unix 以及它为什么这么重要?

    大多数操作系统可以被划分到两个不同的家族.除了微软的基于Windows NT的操作系统外,几乎所有其他的都可以追溯到Unix. Linux,Mac OS X,Android,iOS,Chrome OS ...

  5. [转]C#中的Monitor类

    object obj=new object(); Monitor在锁对象obj上会维持两个线程队列R和W以及一个引用T : (1) T是对当前获得了obj锁的线程的引用(设此线程为CurrThread ...

  6. DWR框架简单应用

    各种Dwr简介不需要多说,知道是实现局部刷新就差不多了,至于实现原理,慢慢参透吧,一下说明怎么使用DWR 首先建一个web工程,然后添加如下jar包:

  7. Java:JDK安装

    访问Oracle网站www.oracle.com/technetwork/java/javase/downloads下载jdk 安装JDK时,不建议安装在有空格的路径名下,例如该目录c:\Progra ...

  8. Jsp页面中使用fckeditor控件的两种方法 [转]

    fckeditor控件请到官方网站下载http://www.fckeditor.net,本例主要用到FCKeditor_2.6.3.zip.fckeditor-java-demo-2.4.1.zip. ...

  9. priority_queue C++

    三种优先队列定义方法:T_T 内部原理以后补..... priority_queue<int> qi;//普通的优先级队列,按从大到小排序 struct Node { friend boo ...

  10. java成员变量与局部变量修饰符的区别

    成员变量: 可以被 public,static ,protected,default,final修饰. 局部变量:包括方法里的和 代码块里的(静态和非静态) 可以被default, final修饰 参 ...