Description

There are N beads which of the same shape and size, but with different weights. N is an odd number and the beads are labeled as 1, 2, ..., N. Your task is to find the bead whose weight is median (the ((N+1)/2)th among all beads). The following comparison has been performed on some pairs of beads: 
A scale is given to compare the weights of beads. We can determine which one is heavier than the other between two beads. As the result, we now know that some beads are heavier than others. We are going to remove some beads which cannot have the medium weight.

For example, the following results show which bead is heavier after M comparisons where M=4 and N=5.

1.	Bead 2 is heavier than Bead 1.

2. Bead 4 is heavier than Bead 3.

3. Bead 5 is heavier than Bead 1.

4. Bead 4 is heavier than Bead 2.

From the above results, though we cannot determine exactly which is the median bead, we know that Bead 1 and Bead 4 can never have the median weight: Beads 2, 4, 5 are heavier than Bead 1, and Beads 1, 2, 3 are lighter than Bead 4. Therefore, we can remove these two beads.

Write a program to count the number of beads which cannot have the median weight.

Input

The first line of the input file contains a single integer t (1 <= t <= 11), the number of test cases, followed by the input data for each test case. The input for each test case will be as follows: 
The first line of input data contains an integer N (1 <= N <= 99) denoting the number of beads, and M denoting the number of pairs of beads compared. In each of the next M lines, two numbers are given where the first bead is heavier than the second bead. 

Output

There should be one line per test case. Print the number of beads which can never have the medium weight.

Sample Input

1
5 4
2 1
4 3
5 1
4 2

Sample Output

2

【题意】给出t个例子,有n个形状相同的bead,给出m个他们之间的轻重情况,找出不可能是中间质量的bead的数量

【思路】将轻重情况看成是一个有向图,i重于j就说明i到j有一条边,若i能到超过n/2个点或者i能被超过n/2个点到达,就说明i不是中间质量的bead

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int inf=0x3f3f3f3f;
const int N=;
int n,m;
int mp[N][N];
void floyd()
{
for(int k=;k<=n;k++)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(mp[i][k]==&&mp[k][j]==)
mp[i][j]=;
if(mp[i][k]==-&&mp[k][j]==-)
mp[i][j]=-;
}
}
} }
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(mp,,sizeof(mp));
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int a,b;
scanf("%d%d",&a,&b);
mp[a][b]=;
mp[b][a]=-;
}
floyd();
int ans=;
for(int i=;i<=n;i++)
{
int l=,r=;
for(int j=;j<=n;j++)
{
if(mp[i][j]==)
r++;
else if(mp[i][j]==-)
l++;
}
if(r>n/||l>n/)
ans++;
}
printf("%d\n",ans);
}
return ;
}

Median Weight Bead_floyd的更多相关文章

  1. POJ1975 Median Weight Bead floyd传递闭包

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

  2. POJ-1975 Median Weight Bead(Floyed)

    Median Weight Bead Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3162 Accepted: 1630 De ...

  3. 珍珠 Median Weight Bead 977

    描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...

  4. Median Weight Bead(最短路—floyed传递闭包)

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

  5. POJ 1975 Median Weight Bead

    Median Weight Bead Time Limit: 1000ms Memory Limit: 30000KB This problem will be judged on PKU. Orig ...

  6. poj 1975 Median Weight Bead(传递闭包 Floyd)

    链接:poj 1975 题意:n个珠子,给定它们之间的重量关系.按重量排序.求确定肯定不排在中间的珠子的个数 分析:由于n为奇数.中间为(n+1)/2,对于某个珠子.若有至少有(n+1)/2个珠子比它 ...

  7. 第十届山东省赛L题Median(floyd传递闭包)+ poj1975 (昨晚的课程总结错了,什么就出度出度,那应该是叫讨论一个元素与其余的关系)

    Median Time Limit: 1 Second Memory Limit: 65536 KB Recall the definition of the median of elements w ...

  8. 别人整理的DP大全(转)

    动态规划 动态规划 容易: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ...

  9. [转] POJ DP问题

    列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...

随机推荐

  1. 《精通javascript》几个简单的函数

    转载http://www.cnblogs.com/jikey/archive/2011/07/25/2116696.html /** * 隐藏元素 * @param {String} elem */f ...

  2. IntelliJ IDEA 12 与 Tomcat 集成并运行Web项目

    配置Tomcat Server 1.Ctrl+Alt+s或者File——>Setting...;选中“Application Servers”点击"+" 创建运行配置 上面的 ...

  3. How to decide on the correct number of clusters?

    Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms 由于uni ...

  4. HTML第二部分 CSS样式表

    CSS(cascading style sheets,层叠样式表),作用是美化HTML网页. /*注释*/   注释语法 2.1 样式表的基本概念 2.1.1样式表的分类 1.内联样式表 和HTML联 ...

  5. 使用tomcat配置文件下载服务器,自定义下载列表

    先上图,利用tomcat,这个下载界面没有代码,点击文件名即可下载 详细参考:http://tomcat.apache.org/tomcat-7.0-doc/default-servlet.html

  6. qml android 的一个例子qtHangMan

    这个例子有2个好处: 1.解决了黑屏问题 2.演示了应用内购买的问题

  7. js方法控制html表格的增加和删除

    <!DOCTYPE html> <html> <head> <title>linshi3.html</title> <meta htt ...

  8. POJ 2159 Ancient Cipher 难度:0

    题目链接:http://poj.org/problem?id=2159 #include <cstring> #include <cstdio> #include <cc ...

  9. centos下cmake安装

    步骤一.安装gcc等必备程序包(已安装则略过此步,用gcc -v检测) yum install -y gcc gcc-c++ make automake 步骤二.安装wget (已安装则略过此步) y ...

  10. WDCP管理面板安装启动EXIF、bcmath完整步骤

    一般我们网站建设的需要,如果使用WDCP面板默认的功能就足够使用,如果需要特殊程序的特定组件支持,就需要独立的安装支持组件.比如一位朋友的程序需要支持EXIF.bcmath组件,这不老蒋寻找解决方法, ...