POJ 3276
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 2193 | Accepted: 1039 |
Description
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
Input
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.
Output
Sample Input
7
B
B
F
B
F
B
B
Sample Output
3 3
Hint
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; #define MAX_N 5005 int N;
int dir[MAX_N],f[MAX_N]; int cal(int K) {
memset(f,,sizeof(f));
int sum = ;
int res = ;
for(int i = ; i + K - <= N; ++i) {
if((dir[i] + sum) % ) {
++res;
f[i] = ;
}
sum += f[i];
if(i - K + >= ) {
sum -= f[i - K + ];
}
} for(int i = N - K + ; i <= N; ++i) {
if((dir[i] + sum) % ) {
//printf(" i = %d sum = %d dir = %d\n",i,sum,dir[i]);
return -;
}
if(i - K + >= ) sum -= f[i - K + ];
} return res;
} void solve() {
int ansm,ansk,t;
for(int k = ; k <= N; ++k) {
//printf("cal = %d\n",cal(k));
if((t = cal(k)) >= && t < ansm) {
ansm = t;
ansk = k;
}
} printf("%d %d\n",ansk,ansm);
}
int main()
{
// freopen("sw.in","r",stdin);
scanf("%d",&N);
for(int i = ; i <= N; ++i) {
char ch[];
scanf("%s",&ch);
if(ch[] == 'F') dir[i] = ;
else dir[i] = ;
//printf("%c",ch);
} solve(); return ;
}
POJ 3276的更多相关文章
- 反转(开关问题) POJ 3276
POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...
- POJ 3276 (开关问题)
题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...
- poj 3276(反转)
传送门:Problem 3276 参考资料: [1]:挑战程序设计竞赛 先献上AC代码,题解晚上再补 题意: John有N头牛,这些牛有的头朝前("F"),有的朝后("B ...
- POJ 3276 Face The Right Way 反转
大致题意:有n头牛,有些牛朝正面,有些牛朝背面.现在你能一次性反转k头牛(区间[i,i+k-1]),求使所有的牛都朝前的最小的反转次数,以及此时最小的k值. 首先,区间反转的顺序对结果没有影响,并且, ...
- Enum:Face The Right Way(POJ 3276)
面朝大海,春暖花开 题目大意:农夫有一群牛,牛排成了一排,现在需要把这些牛都面向正确的方向,农夫买了一个机器,一次可以处理k只牛,现在问你怎么处理这些牛才可以使操作数最小? 这道题很有意思,其实这道题 ...
- Face The Right Way 一道不错的尺取法和标记法题目。 poj 3276
Face The Right Way Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 2899 Accepted: 133 ...
- POJ 3276 Face The Right Way 翻转(开关问题)
题目:Click here 题意:n头牛排成一列,F表示牛面朝前方,B表示面朝后方,每次转向K头连续的牛的朝向,求让所有的牛都能面向前方需要的最少的操作次数M和对应的最小的K. 分析:一个区间反转偶数 ...
- POJ 3276 Face The Right Way
Description Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing ...
- POJ 3276 Face The Right Way(前缀和优化)
题意:有长度为N的01串,有一个操作可以选择连续K个数字取反,求最小的操作数和最小的K使得最后变成全1串.(N<=5000) 由于K是不定的,无法高斯消元. 考虑枚举K,求出最小的操作数. 显然 ...
随机推荐
- shelll函数求两个输入数字之和
#!/bin/bash #This is a test of the addition of the program! function AddFun { read -p "Enter a ...
- Java中HashMap,LinkedHashMap,TreeMap的区别[转]
原文:http://blog.csdn.net/xiyuan1999/article/details/6198394 java为数据结构中的映射定义了一个接口java.util.Map;它有四个实现类 ...
- hdu 3371 Connect the Cities
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3371 Connect the Cities Description In 2100, since th ...
- Java求职面试准备之常见算法
最近在求职面试,整理一下常见面试算法: 对TestAlgorithms.java中方法的测试见JunitTestAlgorithms.java(引入了junit4) 1.TestAlgorithms. ...
- debain上安装mono3.4.0和jexus5.5.2
今天折腾了四个小时才把这个正确安装上,特此记录下.特别感谢群友的支持. 在VMware上新安装了Debain7.5,具体细节不复述了. 一.更新系统 #apt-get update #apt-get ...
- 33.allegro中Autosilk top, Silkscreen top 和Assembly top三个什么区别(转)
Autosilk top, Silkscreen top 和Assembly top Autosilk top:最后出gerber的时候,自动生成的丝印层.会自动调整丝印位置,以及碰到阻焊开窗的地方, ...
- UISlider swift
// // ViewController.swift // UILabelTest // // Created by mac on 15/6/23. // Copyright (c) 2015年 fa ...
- C++中栈的出栈,入栈规则:A,B,C,D,E
考题: 栈底至栈顶一次存放元素 ABCD 在第五个元素E入栈之前 栈中元素可以出栈,则出栈序列可能是_____a d___________. a. ABCED b. DBCEA c. CD ...
- Teamwork-Week2真对必应词典和有道词典的软件分析和用户需求调查(桌面版)
经调查,现在有道词典在该领域拥有很大程度的市场占有率,所以我们将有道词典与必应词典进行对比. 核心功能一:单词本 有道词典中的单词本都只能是由用户手动添加不会的单词,而必应词典中的单词 不仅可以被自己 ...
- Android开发随笔4
昨天: 今天: 编写代码