POJ 3276
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 2193 | Accepted: 1039 |
Description
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
Input
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.
Output
Sample Input
7
B
B
F
B
F
B
B
Sample Output
3 3
Hint
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; #define MAX_N 5005 int N;
int dir[MAX_N],f[MAX_N]; int cal(int K) {
memset(f,,sizeof(f));
int sum = ;
int res = ;
for(int i = ; i + K - <= N; ++i) {
if((dir[i] + sum) % ) {
++res;
f[i] = ;
}
sum += f[i];
if(i - K + >= ) {
sum -= f[i - K + ];
}
} for(int i = N - K + ; i <= N; ++i) {
if((dir[i] + sum) % ) {
//printf(" i = %d sum = %d dir = %d\n",i,sum,dir[i]);
return -;
}
if(i - K + >= ) sum -= f[i - K + ];
} return res;
} void solve() {
int ansm,ansk,t;
for(int k = ; k <= N; ++k) {
//printf("cal = %d\n",cal(k));
if((t = cal(k)) >= && t < ansm) {
ansm = t;
ansk = k;
}
} printf("%d %d\n",ansk,ansm);
}
int main()
{
// freopen("sw.in","r",stdin);
scanf("%d",&N);
for(int i = ; i <= N; ++i) {
char ch[];
scanf("%s",&ch);
if(ch[] == 'F') dir[i] = ;
else dir[i] = ;
//printf("%c",ch);
} solve(); return ;
}
POJ 3276的更多相关文章
- 反转(开关问题) POJ 3276
POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...
- POJ 3276 (开关问题)
题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...
- poj 3276(反转)
传送门:Problem 3276 参考资料: [1]:挑战程序设计竞赛 先献上AC代码,题解晚上再补 题意: John有N头牛,这些牛有的头朝前("F"),有的朝后("B ...
- POJ 3276 Face The Right Way 反转
大致题意:有n头牛,有些牛朝正面,有些牛朝背面.现在你能一次性反转k头牛(区间[i,i+k-1]),求使所有的牛都朝前的最小的反转次数,以及此时最小的k值. 首先,区间反转的顺序对结果没有影响,并且, ...
- Enum:Face The Right Way(POJ 3276)
面朝大海,春暖花开 题目大意:农夫有一群牛,牛排成了一排,现在需要把这些牛都面向正确的方向,农夫买了一个机器,一次可以处理k只牛,现在问你怎么处理这些牛才可以使操作数最小? 这道题很有意思,其实这道题 ...
- Face The Right Way 一道不错的尺取法和标记法题目。 poj 3276
Face The Right Way Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 2899 Accepted: 133 ...
- POJ 3276 Face The Right Way 翻转(开关问题)
题目:Click here 题意:n头牛排成一列,F表示牛面朝前方,B表示面朝后方,每次转向K头连续的牛的朝向,求让所有的牛都能面向前方需要的最少的操作次数M和对应的最小的K. 分析:一个区间反转偶数 ...
- POJ 3276 Face The Right Way
Description Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing ...
- POJ 3276 Face The Right Way(前缀和优化)
题意:有长度为N的01串,有一个操作可以选择连续K个数字取反,求最小的操作数和最小的K使得最后变成全1串.(N<=5000) 由于K是不定的,无法高斯消元. 考虑枚举K,求出最小的操作数. 显然 ...
随机推荐
- 《大话设计模式》ruby版代码:简单工厂模式
之前有看过<ruby设计模式>,不过渐渐的都忘记了.现在买了一个大话设计模式,看起来不是那么枯燥,顺便将代码用ruby实现了一下. # -*- encoding: utf-8 -*- #运 ...
- shell-IF判断
#!/bin/bash echo "-----------------strat---------------" read -p "Enter a number:&quo ...
- [原创]使用benchmarksql和pgbench对PostgreSQL Plus Advanced Server进行性能测试
一.测试环境 benchmarksql version:4.0.8 rhel 6.3 vmware esxi 二.理解benchmarksql性能测试原理TPC-C 1.理解TPC-C TPC-C模拟 ...
- [转]va_start和va_end使用详解
转载地址:http://www.cnblogs.com/hanyonglu/archive/2011/05/07/2039916.html 本文主要介绍va_start和va_end的使用及原理. ...
- mac中添加环境变量
sudo vi /etc/paths 来编辑 paths,将环境变量添加到 paths 中. vim 是一个编辑器,另外还有几个,如:Pico,Emacs.
- easyui 布局自适应
最近在把以前写的一个项目改成用easyui做前端.过程中遇到了不少问题.其中一个就是datagrid不能很好的布局.想了好多办法都有局限.最后想到会不会是布局(easyui-layout)的问题,经过 ...
- 编译基于ARM LINUX的驱动模块的Makefile
KERNELDIR =/home/wenhao/platform/linux-2.6.34PWD := $(shell pwd)CROSS_COMPILE = /usr/local/arm/4.3.2 ...
- 怎样把php数组转换成字符串,php implode()
实例代码 一维数组转换成字符串代码! <?php $arr1=array("shu","zhu","1"); $c=implode(& ...
- GB28181国检推流
GB28181国检有一向内容是实时播放摄像机流,经过一番努力,搞定这个功能,现分享心得: 首先需要了解流程,说简答点就是视频流从哪里来到什么地方去,下图描述了视频流推流,转发的 基本过程:信令交互成功 ...
- Django:快速搭建简单的Blog
一,创建项目 1, 为blog创建名为mysite的工程项目: django-admin.py startproject mysite 2, 项目结构如下: mysite ├── manage.py ...