POJ 3276
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 2193 | Accepted: 1039 |
Description
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
Input
Lines 2..N+1: Line i+1 contains a single character, F or B, indicating whether cow i is facing forward or backward.
Output
Sample Input
7
B
B
F
B
F
B
B
Sample Output
3 3
Hint
Source
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; #define MAX_N 5005 int N;
int dir[MAX_N],f[MAX_N]; int cal(int K) {
memset(f,,sizeof(f));
int sum = ;
int res = ;
for(int i = ; i + K - <= N; ++i) {
if((dir[i] + sum) % ) {
++res;
f[i] = ;
}
sum += f[i];
if(i - K + >= ) {
sum -= f[i - K + ];
}
} for(int i = N - K + ; i <= N; ++i) {
if((dir[i] + sum) % ) {
//printf(" i = %d sum = %d dir = %d\n",i,sum,dir[i]);
return -;
}
if(i - K + >= ) sum -= f[i - K + ];
} return res;
} void solve() {
int ansm,ansk,t;
for(int k = ; k <= N; ++k) {
//printf("cal = %d\n",cal(k));
if((t = cal(k)) >= && t < ansm) {
ansm = t;
ansk = k;
}
} printf("%d %d\n",ansk,ansm);
}
int main()
{
// freopen("sw.in","r",stdin);
scanf("%d",&N);
for(int i = ; i <= N; ++i) {
char ch[];
scanf("%s",&ch);
if(ch[] == 'F') dir[i] = ;
else dir[i] = ;
//printf("%c",ch);
} solve(); return ;
}
POJ 3276的更多相关文章
- 反转(开关问题) POJ 3276
POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...
- POJ 3276 (开关问题)
题目链接: http://poj.org/problem?id=3276 题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小. 解题思 ...
- poj 3276(反转)
传送门:Problem 3276 参考资料: [1]:挑战程序设计竞赛 先献上AC代码,题解晚上再补 题意: John有N头牛,这些牛有的头朝前("F"),有的朝后("B ...
- POJ 3276 Face The Right Way 反转
大致题意:有n头牛,有些牛朝正面,有些牛朝背面.现在你能一次性反转k头牛(区间[i,i+k-1]),求使所有的牛都朝前的最小的反转次数,以及此时最小的k值. 首先,区间反转的顺序对结果没有影响,并且, ...
- Enum:Face The Right Way(POJ 3276)
面朝大海,春暖花开 题目大意:农夫有一群牛,牛排成了一排,现在需要把这些牛都面向正确的方向,农夫买了一个机器,一次可以处理k只牛,现在问你怎么处理这些牛才可以使操作数最小? 这道题很有意思,其实这道题 ...
- Face The Right Way 一道不错的尺取法和标记法题目。 poj 3276
Face The Right Way Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 2899 Accepted: 133 ...
- POJ 3276 Face The Right Way 翻转(开关问题)
题目:Click here 题意:n头牛排成一列,F表示牛面朝前方,B表示面朝后方,每次转向K头连续的牛的朝向,求让所有的牛都能面向前方需要的最少的操作次数M和对应的最小的K. 分析:一个区间反转偶数 ...
- POJ 3276 Face The Right Way
Description Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing ...
- POJ 3276 Face The Right Way(前缀和优化)
题意:有长度为N的01串,有一个操作可以选择连续K个数字取反,求最小的操作数和最小的K使得最后变成全1串.(N<=5000) 由于K是不定的,无法高斯消元. 考虑枚举K,求出最小的操作数. 显然 ...
随机推荐
- WPF 超链接方式
<TextBlock> <Hyperlink Name="hc" Click="hc_Click" Navi ...
- iframe 父子窗口相互之间调用语法
一.父窗口调用iframe子窗口方法 1.HTML语法:<iframe name="myFrame" src="child.html"></i ...
- 学习KMP算法
int kmp(char * t,int lenT,char * pat,int lenPat){ ,posT=; int[] f=partialMatch(pat,lenPat)//获取pat字符串 ...
- EMVTag系列1《数据分组》
数据分组的设计在个人化过程中承担着重要的作用.数据分组标识符(DGI)是两字节十六进制数.数据分组标识的第一个字节等于'01'到'1E',表明数据存储的SFI.第二个字节表明SFI记录的记录编号.其他 ...
- VBA赋值给指定单元格
这是一个Range对象基本操作实例,对指定单元格赋值,然后使用弹窗获取值. 代码如下: Sub test1() Worksheets( MsgBox "工作表Sheet1内单元格A5中的值为 ...
- 微软开放技术(中国)携 CKAN 和 OData 技术引入基于 Azure 的开放数据平台
今天,微软开放技术(中国)通过微软公有云Azure引入一个全新的开放数据平台,该平台基于开源数据门户解决方案 CKAN,以及由微软开放技术(中国)特别针对中国市场优化的ODATA插件来增强其国际化和本 ...
- go语言示例-Timer计时器的用法
计时器用来定时执行任务,分享一段代码: package main import "time" import "fmt" func main() { //新建计时 ...
- C#设计模式之装饰者模式(Decorator Pattern)
1.概述 装饰者模式,英文名叫做Decorator Pattern.装饰模式是在不必改变原类文件和使用继承的情况下,动态地扩展一个对象的功能.它是通过创建一个包装对象,也就是装饰来包裹真实的对象. 2 ...
- 013--VS2013 C++ 地图贴图-其它格式图片
//--------------------------------------------InitInstance() 函数------------------------------------- ...
- pb中sql语句用to_char查询出来数据,居然无法检索出数据,oracle数据库,这是什么原因?
/*这样dw_modified总是无法检索出正确的结果*/ ') into :is_recoder_old_sn from emra03 where szybh01 = :as_pat_id and ...