HDU 1061 Rightmost Digit --- 快速幂取模
题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果
解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的,
因为会超出数据范围,即使是long long也无法存储。
因此需要利用 (a*b)%c = (a%c)*(b%c)%c,一直乘下去,即 (a^n)%c = ((a%c)^n)%c;
即每次都对结果取模一次
此外,此题直接使用朴素的O(n)算法会超时,因此需要优化时间复杂度:
一是利用分治法的思想,先算出t = a^(n/2),若n为奇数,则返回t*t*a,偶数则返回t*t;
二是使用通过循环实现快速幂取模(其实二者实质上是相同的)。
1.递归解法
/* HDU 1061 Rightmost Digit --- 快速幂取模 */
#include <cstdio> /*
@function: 计算n^n%10
@param: n为待计算的数
@return: 返回n^n%10的结果
@explain: 利用分治策略以及同余定理实现快速幂取模
*/
int pow_mod(int a, int n){
if (n == ){
return ;
}
int x = pow_mod(a, n / ); //x = a^(n/2)
long long ans = (long long)x * x % ;
if (n & ){
//若n为奇数
ans = ans * a % ;
}
return (int)ans;
} int main()
{
int t, n;
scanf("%d", &t);
while (t--){
scanf("%d", &n);
printf("%d\n", pow_mod(n, n));
} return ;
}
2.快速幂取模
/* HDU 1061 Rightmost Digit --- 快速幂取模 */
#include <cstdio> /* 快速幂取模 */
int pow_mod(int a, int n){
int ans = ;
int t = a % ;
while (n){
if (n & ){
//n为奇数
ans = ans * t % ;
}
n /= ; //相当于将n拆成相应的二进制
t = t * t % ;
}
return ans; } int main()
{
int t, n;
scanf("%d", &t);
while (t--){
scanf("%d", &n);
printf("%d\n", pow_mod(n, n));
} return ;
}
HDU 1061 Rightmost Digit --- 快速幂取模的更多相关文章
- 题解报告:hdu 1061 Rightmost Digit(快速幂取模)
Problem Description Given a positive integer N, you should output the most right digit of N^N. Input ...
- HDU 1061.Rightmost Digit-规律题 or 快速幂取模
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- hdu 1097 A hard puzzle 快速幂取模
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A ha ...
- 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
- 杭电 2817 A sequence of numbers【快速幂取模】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 解题思路:arithmetic or geometric sequences 是等差数列和等比数 ...
- 【转】C语言快速幂取模算法小结
(转自:http://www.jb51.net/article/54947.htm) 本文实例汇总了C语言实现的快速幂取模算法,是比较常见的算法.分享给大家供大家参考之用.具体如下: 首先,所谓的快速 ...
- UVa 11582 (快速幂取模) Colossal Fibonacci Numbers!
题意: 斐波那契数列f(0) = 0, f(1) = 1, f(n+2) = f(n+1) + f(n) (n ≥ 0) 输入a.b.n,求f(ab)%n 分析: 构造一个新数列F(i) = f(i) ...
- POJ3641-Pseudoprime numbers(快速幂取模)
题目大意 判断一个数是否是伪素数 题解 赤果果的快速幂取模.... 代码: #include<iostream> #include<cmath> using namespace ...
- 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...
随机推荐
- C# Process打开程序并移动窗口到指定位置
process.start只是按指定的参数来运行一个程序,而这个程序自己运行起来是什么样子的就不是Process所能处理的了,不过当程序运行起来后倒是可以通过Process的MainWindowHan ...
- 推荐一款好用轻便的在线UML画图工具
刚接触UML时间不长,看了N多教学视频,下载好了几个软件各种不习惯 当我遇见了ProcessOn 从此我彻底“爱上”了它! http://www.processon.com/ UML各类例图它几乎全 ...
- Word2013可以写博客
步骤如下http://www.cnblogs.com/guyichang/p/4629211.html
- 国内android帮助文档镜像网站---http://wear.techbrood.com/develop/index.html
http://wear.techbrood.com/develop/index.html
- WPF制作子窗体的弹出动画效果
创建一个WPF应用程序WpfApplication1,新建个窗体DialogWin <Windowx:Class="WpfApplication1.DialogWin" xm ...
- php大力力 [013节]mySQL数据库乱码问题我还没解决
<?php echo"测试<br>"; $sql_connection = mysql_connect("localhost","e ...
- yii2 数据验证
控制器层 <?php namespace frontend\controllers; use Yii; use frontend\models\FormsModel; use yii\web\U ...
- iOS:测试机添加
一,首先打开开发者首页:https://developer.apple.com/,点击Member Center二,点击certificates,Identifiers & Profiles三 ...
- Azure 自动化:使用PowerShell Credential连接到Azure
最近在中国版windows azure中新上线的自动化功能, 使用自动化,您可以导入自己的PowerShell脚本,然后设置一个运行计划使得脚本能按计划运行. 在本文中,我们来学习如何使用PowerS ...
- opencv3.1包安装
由于之前零零碎碎安装了很多必要的库: 现在只需: (1)下载和解压包 https://github.com/daveselinger/opencv/tree/3.1.0-with-cuda8 这里的分 ...