logistic原理与实践
逻辑回归模型是一种将影响概率的不同因素结合在一起的指数模型,得到的是0~1之间的概率分布.自变量范围是,值域范围限制在0~1之间.在搜索广告、信息处理和生物统计中有广泛的应用.例如搜索广告的点击率预估,将影响概率预测的各种信息作为变量,比如广告的位置、广告和搜索词的相关性、广告展示的时间(比如晚上广告的点击率会略高于下午)


优缺点:
优点:
1)容易使用和解释,实用价值高的常用市场预测方法;
2)它是直接对分类可能性建模,无需事先假设数据分布,这样就避免了假设分布不准确问题;
3)可以适用于连续性和类别性自变量;
缺点:
1)对模型中自变量多重共线性较为敏感,例如两个高度相关自变量同时放入模型,可能导致较弱的一个自变量回归符号不符合预期,符号被扭转.需要利用因子分析或者变量聚类分析等手段来选择代表性的自变量,以减少候选变量之间的相关性;
2)预测结果呈“S”型,因此从log(odds)向概率转化的过程是非线性的,在两端随着log(odds)值的变化,概率变化很小,边际值太小,slope太小,而中间概率的变化很大,很敏感.导致很多区间的变量变化对目标概率的影响没有区分度,无法确定阀值.
###########################R语言################################
index <- which(iris$Species == 'setosa')
ir <- iris[- index,]
levels(ir$Species)[1] <- ''
split <- sample(100,100*(2/3))
#生成训练集
ir_train <- ir[split,]
#生成测试集
ir_test <- ir[-split,]
fit <- glm(Species ~.,family=binomial(link='logit'),data=ir_train)
summary(fit)
real <- ir_test$Species
predict <- predict(fit,type='response',newdata=ir_test)
data.frame(real,predict)
res <- data.frame(real,predict =ifelse(predict>0.5,'virginca','versicorlor'))
#查看模型效果
#################################Matlab#######################################
data = importdata('somelab.xlsx');
x(:,1:4) = data.data.Sheet1(:,1:4);
y(:,1) = data.data.Sheet1(:,7);
a =glmfit(x(1:80,1:4),y(1:80,1),'binomial', 'link', 'logit');
logitFit = glmval(b,x(80:100,1:4), 'logit');
###############################Weka##########################################
Funtion:
Logistic
SimpleLogistic

logistic原理与实践的更多相关文章
- 转:fastText原理及实践(达观数据王江)
http://www.52nlp.cn/fasttext 1条回复 本文首先会介绍一些预备知识,比如softmax.ngram等,然后简单介绍word2vec原理,之后来讲解fastText的原理,并 ...
- 深入理解FFM原理与实践
原文:http://tech.meituan.com/deep-understanding-of-ffm-principles-and-practices.html 深入理解FFM原理与实践 del2 ...
- Atitit 管理原理与实践attilax总结
Atitit 管理原理与实践attilax总结 1. 管理学分类1 2. 我要学的管理学科2 3. 管理学原理2 4. 管理心理学2 5. 现代管理理论与方法2 6. <领导科学与艺术4 7. ...
- Atitit.ide技术原理与实践attilax总结
Atitit.ide技术原理与实践attilax总结 1.1. 语法着色1 1.2. 智能提示1 1.3. 类成员outline..func list1 1.4. 类型推导(type inferenc ...
- Atitit.异步编程技术原理与实践attilax总结
Atitit.异步编程技术原理与实践attilax总结 1. 俩种实现模式 类库方式,以及语言方式,java futuretask ,c# await1 2. 事件(中断)机制1 3. Await 模 ...
- Atitit.软件兼容性原理与实践 v5 qa2.docx
Atitit.软件兼容性原理与实践 v5 qa2.docx 1. Keyword2 2. 提升兼容性的原则2 2.1. What 与how 分离2 2.2. 老人老办法,新人新办法,只新增,少修改 ...
- Atitit 表达式原理 语法分析 原理与实践 解析java的dsl 递归下降是现阶段主流的语法分析方法
Atitit 表达式原理 语法分析 原理与实践 解析java的dsl 递归下降是现阶段主流的语法分析方法 于是我们可以把上面的语法改写成如下形式:1 合并前缀1 语法分析有自上而下和自下而上两种分析 ...
- Atitit.gui api自动化调用技术原理与实践
Atitit.gui api自动化调用技术原理与实践 gui接口实现分类(h5,win gui, paint opengl,,swing,,.net winform,)1 Solu cate1 Sol ...
- Atitit.提升语言可读性原理与实践
Atitit.提升语言可读性原理与实践 表1-1 语言评价标准和影响它们的语言特性1 1.3.1.2 正交性2 1.3.2.2 对抽象的支持3 1.3.2.3 表达性3 .6 语言设计中的权 ...
随机推荐
- 【转】PowerShell入门(十二):编写PowerShell管理单元和二进制模块
转至:http://www.cnblogs.com/ceachy/archive/2013/03/13/PowerShell_SnapIn.html PowerShell一开始就提出利用管理单元来实现 ...
- CSS 盒子
转载自:http://www.zblog.us/programing/web/css/cssbox-introduce-2.html 盒子模型定义 如果CSS对HTML文档元素生成了一个描述该元素在H ...
- javascript中正则表达式的基础语法
× 目录 [1]定义 [2]特点 [3]元字符[4]转义字符[5]字符组[6]量词[7]括号[8]选择[9]断言[10]模式[11]优先级[12]局限性 前面的话 正则表达式在人们的印象中可能是一堆无 ...
- nextAll([expr])
描述: 给第一个div之后的所有元素加个类 HTML 代码: <div></div><div></div><div></div> ...
- Thinking in BigData 系列
Thinking in BigData(九)大数据hadoop集群下离线数据存储和挖掘架构 Thinking in BigData(八)大数据Hadoop核心架构HDFS+MapReduce+Hbas ...
- 微信H5页面内实现一键关注公众号
H5页面内实现关注公众号的微信JSSDK没有相关接口开放,因此就得动点脑筋来实现该功能了.下面的方法就是通过一种非常蹊跷的方式实现的. 首先,需要在公众号内发表一篇原创文章,注意是原创文章,然后由另一 ...
- 使用netty4.x客户端接收较大数据量报文时发生的读取不完整bug修复记录
1.先说问题 背景:服务是运行在Linux上的安全网关提供的,TCP协议发送 通过二进制编码的xml字符串 报文,报文头的第一个字段是int类型的表示字节序标记,第二个字段是int类型的表示整个报文长 ...
- cocos2d-x视频控件VideoPlayer的用户操作栏进度条去除(转载)
目前遇到两个问题: (1)视频控件移除有问题,会报异常. (2)视频控件有用户操作栏,用户点击屏幕会停止视频播放. 对于第一个问题,主要是移除控件时冲突引起的,目前简单处理是做一个延时处理,先stop ...
- [Machine-Learning] matlab 矩阵常见基本操作
概述 对矩阵的主要操作,matlab 中都有现成的指令或者库函数与之对应. 矩阵最早来自于方程组的系数和常数所构成的方阵,这一概念是由19世纪的英国数学家凯利提出的. 创建矩阵 这里写的不全,但是足够 ...
- JAVA可阻塞队列-ArrayBlockingQueue
在前面的的文章,写了一个带有缓冲区的队列,是用JAVA的Lock下的Condition实现的,但是JAVA类中提供了这项功能,就是ArrayBlockingQueue, ArrayBlockingQu ...