In computer vision, rigid motion segmentation is the process of separating regions, features, or trajectories from a video sequence into coherent subsets of space and time. These subsets correspond to independent rigidly moving objects in the scene. The goal of this segmentation is to differentiate and extract the meaningful rigid motion from the background and analyze it. Image segmentation techniques labels the pixels to be a part of pixels with certain characteristics at a particular time. Here, the pixels are segmented depending on its relative movement over a period of time i.e. the time of the video sequence.

There are a number of methods that have been proposed to do so. There is no consistent way to classify motion segmentation due to its large variation in literature. Depending on the segmentation criterion used in the algorithm it can be broadly classified into the following categories: image difference, statistical methods, wavelets, layering, optical flow and factorization. Moreover depending on the number of views required the algorithms can be two or multi view-based. Rigid motion segmentation has found an increase in its application over the recent past with rise in surveillance and video editing. These algorithms are discussed further.

Rigid motion segmentation的更多相关文章

  1. CVPR2013总结

    前不久CVPR的结果出来了,首先恭喜我一个已经毕业工作的师弟中了一篇文章.完整的文章列表已经在CVPR的主页上公布了(链接),今天把其中一些感兴趣的整理一下,虽然论文下载的链接大部分还都没出来,不过可 ...

  2. Improving RGB-D SLAM in dynamic environments: A motion removal approach

    一.贡献 (1)提出一种针对RGB-D的新的运动分割算法 (2)运动分割采用矢量量化深度图像 (3)数据集测试,并建立RGB-D SLAM系统 二.Related work [1]R.K. Namde ...

  3. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  4. Computer Graphics Research Software

    Computer Graphics Research Software Helping you avoid re-inventing the wheel since 2009! Last update ...

  5. ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)

    IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...

  6. CVPR 2017 Paper list

    CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...

  7. Discrete.Differential.Geometry-An.Applied.Introduction(sig2008)笔记

    -------------------------------------------------------------- Chapter 1: Introduction to Discrete D ...

  8. matlab示例程序--Motion-Based Multiple Object Tracking--卡尔曼多目标跟踪程序--解读

    静止背景下的卡尔曼多目标跟踪 最近学习了一下多目标跟踪,看了看MathWorks的关于Motion-Based Multiple Object Tracking的Documention. 官网链接:h ...

  9. MHI ,运动历史图像的的获取[下载自CSDN]

    #include "cv.h" #include "highgui.h" #include "stdlib.h" #include &quo ...

随机推荐

  1. java中的泛型和sql中的索引

    sql中的索引 索引:好处查询的速度快,被删除,修改,不会对表产生影响,作用是加速查询: 一种典型的数据库对象 作用:提交数据的查询效率,尤其对一些数据量很大的表 索引是用来为表服务的 索引是orac ...

  2. zigbee学习之路(十二):zigbee协议原理介绍

    一.前言 从今天开始,我们要正式开始进行zigbee相关的通信实验了,我所使用的协议栈是ZStack 是TI ZStack-CC2530-2.3.0-1.4.0版本,大家也可以从TI的官网上直接下载T ...

  3. [原]__FILE__宏

    在vs中__FILE__宏代表了当前文件,如果有/FC那么__FILE__代表了当前文件的全路径!否则只表示当前文件名   参考 https://msdn.microsoft.com/en-us/li ...

  4. maven+spark2.0.0最大连通分量

    运用到了spark2.0.0的grarhx包,要手动的在pom.xml里面添加依赖包,要什么就在里面添加依赖,然后在run->maven install

  5. [转]DataURL与File,Blob,canvas对象之间的互相转换的Javascript

    来源 http://blog.csdn.net/cuixiping/article/details/45932793 canvas转换为dataURL (从canvas获取dataURL) var d ...

  6. video 手机全屏自动播放

    <video src="video.mp4" id="video" x-webkit-airplay="true" webkit-pl ...

  7. 使Docker Container支持运行SWT程序

    1, 下载安装JDK的docker container 我是从这个源下载已经做好的JDK8的container: https://registry.hub.docker.com/u/dockerfil ...

  8. UI进阶 跳转系统设置相关界面的方法

    跳转系统设置界面,例如提示用户打开定位.蓝牙或者WIFI,提醒用户打开推送或者位置权限等 在iOS6之后,第三方应用需要跳转系统设置界面,需要在URL type中添加一个prefs值,如下图: 跳转系 ...

  9. Openstack+Kubernetes+Docker微服务实践之路--Kubernetes

    经过几番折腾终于搞定Kubernetes了,我们要在Openstack上部署Kubernetes集群,使用最新工具Kubeadm来安装,由于不能直接访问Kubernetes的源,我们需要一台可以穿墙的 ...

  10. Java一个汉字占几个字节(详解与原理)

    1.先说重点: 不同的编码格式占字节数是不同的,UTF-8编码下一个中文所占字节也是不确定的,可能是2个.3个.4个字节: 2.以下是源码: @Test public void test1() thr ...