Rigid motion segmentation
In computer vision, rigid motion segmentation is the process of separating regions, features, or trajectories from a video sequence into coherent subsets of space and time. These subsets correspond to independent rigidly moving objects in the scene. The goal of this segmentation is to differentiate and extract the meaningful rigid motion from the background and analyze it. Image segmentation techniques labels the pixels to be a part of pixels with certain characteristics at a particular time. Here, the pixels are segmented depending on its relative movement over a period of time i.e. the time of the video sequence.
There are a number of methods that have been proposed to do so. There is no consistent way to classify motion segmentation due to its large variation in literature. Depending on the segmentation criterion used in the algorithm it can be broadly classified into the following categories: image difference, statistical methods, wavelets, layering, optical flow and factorization. Moreover depending on the number of views required the algorithms can be two or multi view-based. Rigid motion segmentation has found an increase in its application over the recent past with rise in surveillance and video editing. These algorithms are discussed further.
Rigid motion segmentation的更多相关文章
- CVPR2013总结
前不久CVPR的结果出来了,首先恭喜我一个已经毕业工作的师弟中了一篇文章.完整的文章列表已经在CVPR的主页上公布了(链接),今天把其中一些感兴趣的整理一下,虽然论文下载的链接大部分还都没出来,不过可 ...
- Improving RGB-D SLAM in dynamic environments: A motion removal approach
一.贡献 (1)提出一种针对RGB-D的新的运动分割算法 (2)运动分割采用矢量量化深度图像 (3)数据集测试,并建立RGB-D SLAM系统 二.Related work [1]R.K. Namde ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- Computer Graphics Research Software
Computer Graphics Research Software Helping you avoid re-inventing the wheel since 2009! Last update ...
- ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...
- CVPR 2017 Paper list
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...
- Discrete.Differential.Geometry-An.Applied.Introduction(sig2008)笔记
-------------------------------------------------------------- Chapter 1: Introduction to Discrete D ...
- matlab示例程序--Motion-Based Multiple Object Tracking--卡尔曼多目标跟踪程序--解读
静止背景下的卡尔曼多目标跟踪 最近学习了一下多目标跟踪,看了看MathWorks的关于Motion-Based Multiple Object Tracking的Documention. 官网链接:h ...
- MHI ,运动历史图像的的获取[下载自CSDN]
#include "cv.h" #include "highgui.h" #include "stdlib.h" #include &quo ...
随机推荐
- 树上倍增LCA模版
void dfs(int u){ ;i = edge.next){ int to = dege[i].to; ]) continue; d[to] = d[u]+; dis[to] = dis[u]+ ...
- Git使用指南(1)——Git配置命令
配置用户信息 git config --global user.name bongxin git config --global user.email bongxin@yeah.net 配置文本编辑器 ...
- shell技巧
如何实现Shell脚本以DEAMON的方式运行,即实现Shell版的Fork if [ "$1" != 'background' ] ; then scriptdir=$(cd & ...
- StringBuffer(线程安全)StringBuilder(非线程安全)
StringBuffer属于线程安全,相对为重量级 StringBuilder属于非线程安全,相对为轻量级 线程安全的概念: 网络编程中许多线程可能会同时运行一段代码.当每次运行结果和单独线程运行的结 ...
- DOM树操作
DOM 操作 访问与树关系(节点) 绘制 DOM 树: childNodes, attributes 从一个中心元素访问其所有的直系亲属元素 访问父节点: parentNode 访问上一个兄弟节点: ...
- Kanzi编程基础1 - 定时器Timer
Kanzi虽然发生了比较多的版本更迭,api也发生了很多变化,但定时器的头文件一直都在一个地方:#include "user/include/user/ui/message/kzu_mess ...
- 用Excel制作热图(heatmap)的方法
http://jingyan.baidu.com/article/64d05a0240ec75de55f73bd8.html 利用Excel 2010及以上版本的"条件格式"--& ...
- Ember.js入门教程、博文汇总
第一章 对象模型 Ember.js 入门指南——类的定义.初始化.继承 Ember.js 入门指南——类的扩展(reopen) Ember.js 入门指南——计算属性(compute properti ...
- Android 之surfaceView (画动态圆圈)
通过之前介绍的如何自定义View, 我们知道使用它可以做一些简单的动画效果.它通过不断循环的执行View.onDraw方法,每次执行都对内部显示的图形做一些调整,我们假设 onDraw方法每秒执行 ...
- 准循环LDPC码用于公钥密码时的奇偶校验矩阵
设H为奇偶校验矩阵,其行权重为d.Q为转置矩阵,其行权重为m.对于LDPC码,有d/n<< 1, m/n< 1. H´=H·QT是用于公钥密码的奇偶校验矩阵.它不是老密码G的奇偶校验 ...