span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */

-->

安装MXNET

由于公司需要,近期需要快速精通mxnet,接下来的几个星期会陆续更新关于mxnet的笔记,提供参考和备忘。第一篇介绍mxnet的安装,mxnet的安装过程十分蛋疼,个人也是摸索了许久才安装成功,期间也是遇到了各种奇奇怪怪的坑,为了避免新人少走弯路,遂将经验总结于此。

windows上的安装

本人机器配置为Win10 + Cuda 7.5, 后续的安装以此为准。 1.mxnet需要VS2013支持C++ 11特性 在Visual C++ Compiler Nov 2013 CTP下载C++ 11版本的编译器,接着将C:\Program Files (x86)\Microsoft Visual C++ Compiler Nov 2013 CTP下所有同名目录中的文件覆盖到C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC下所有同名目录下对应的文件(覆盖前记得备份) 2.从github克隆源码 git clone --recursive https://github.com/dmlc/mxnet 这里提醒注意一定不要忘记--recursive参数,因为mxnet依赖于DMLC通用工具包,--recursive参数可以自动加载mshadow等依赖。 3.用Cmake生成项目工程文件,并编译项目 打开cmake,Where is the source code栏里打开刚才下好的mxnet源代码目录,Where to build the binaries栏里指定生成工程文件和编译结果的路径,这里我填的是C:/mxnet/build,如图所示: 接着点击configure,生成配置。

然后我们点击generate,生成.sln项目文件 找到生成的工程文件mxnet.sln,用vs2013打开

最后,我们在项目mxnet上点击右键->生成,开始编译。

经过漫长的等待后,mxnet终于编译完成。

编译完成后,在C:\mxnet\build\Release目录下会生成三个文件:libmxnet.dll,libmxnet.exp,libmxnet.lib。 4.安装mxnet的python接口 接下来我们到mxnet的源代码目录:G:\OpenSource\mxnet\python,运行

python setup.py install

来安装mxnet的python包。

我们将libmxnet.dll 接着,导入mxnet的时候发生了如下的错误:

通过调试发现问题出在打开libmxnet.dll的时候,问题应该出在没有导入依赖的dll文件,但蛋疼的是我也不知道它到底依赖哪一些dll文件。 5.安装依赖 通过一番搜索,我找到一个名为dependency walker的软件,用它打开libmxnet.dll,我们看到还缺少的dll文件有哪些(图中的问号)

这些均能dll在mxnet的release tab下找到,下载完成后将其解压到mxnet的pthon安装目录C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet下。将这些文件放入目录后,我们测试一下能不能导入

import ctypes
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\cudart64_75.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\cublas64_75.dll")
ctypes._dlopen(r"cudnn64_5.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\libopenblas.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\opencv_world300.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\opencv_core2413.dll")
ctypes._dlopen(r"vcomp120.dll")
ctypes._dlopen(r"kernel32.dll")
import mxnet as mx
print "mxnet version is:%s"%mx.__version__
mxnet version is:0.7.0

上面的代码中,我们需要手动的载入mxnet依赖的动态链接库才能导入,目前还不清楚为什么它不会自动载入,这个问题留待以后解决,目前可以先把上段代码加入到mxnet的初始化代码中。接着我们跑一跑examples/image-classification/train_mnist这个例子

import ctypes
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\cudart64_75.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\cublas64_75.dll")
ctypes._dlopen(r"cudnn64_5.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\libopenblas.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\opencv_world300.dll")
ctypes._dlopen(r"C:\Anaconda2\Lib\site-packages\mxnet-0.7.0-py2.7.egg\mxnet\opencv_core2413.dll")
ctypes._dlopen(r"vcomp120.dll")
ctypes._dlopen(r"kernel32.dll")
import mxnet as mx
import argparse
import os, sys
import logging def _download(data_dir):
if not os.path.isdir(data_dir):
os.system("mkdir " + data_dir)
os.chdir(data_dir)
if (not os.path.exists('train-images-idx3-ubyte')) or \
(not os.path.exists('train-labels-idx1-ubyte')) or \
(not os.path.exists('t10k-images-idx3-ubyte')) or \
(not os.path.exists('t10k-labels-idx1-ubyte')):
os.system("wget http://data.dmlc.ml/mxnet/data/mnist.zip")
os.system("unzip -u mnist.zip; rm mnist.zip")
os.chdir("..") def get_loc(data, attr={'lr_mult':'0.01'}):
"""
the localisation network in lenet-stn, it will increase acc about more than 1%,
when num-epoch >=15
"""
loc = mx.symbol.Convolution(data=data, num_filter=30, kernel=(5, 5), stride=(2,2))
loc = mx.symbol.Activation(data = loc, act_type='relu')
loc = mx.symbol.Pooling(data=loc, kernel=(2, 2), stride=(2, 2), pool_type='max')
loc = mx.symbol.Convolution(data=loc, num_filter=60, kernel=(3, 3), stride=(1,1), pad=(1, 1))
loc = mx.symbol.Activation(data = loc, act_type='relu')
loc = mx.symbol.Pooling(data=loc, global_pool=True, kernel=(2, 2), pool_type='avg')
loc = mx.symbol.Flatten(data=loc)
loc = mx.symbol.FullyConnected(data=loc, num_hidden=6, name="stn_loc", attr=attr)
return loc def get_mlp():
"""
multi-layer perceptron
"""
data = mx.symbol.Variable('data')
fc1 = mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128)
act1 = mx.symbol.Activation(data = fc1, name='relu1', act_type="relu")
fc2 = mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64)
act2 = mx.symbol.Activation(data = fc2, name='relu2', act_type="relu")
fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10)
mlp = mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
return mlp def get_lenet(add_stn=False):
"""
LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick
Haffner. "Gradient-based learning applied to document recognition."
Proceedings of the IEEE (1998)
"""
data = mx.symbol.Variable('data')
if(add_stn):
data = mx.sym.SpatialTransformer(data=data, loc=get_loc(data), target_shape = (28,28),
transform_type="affine", sampler_type="bilinear")
# first conv
conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=20)
tanh1 = mx.symbol.Activation(data=conv1, act_type="tanh")
pool1 = mx.symbol.Pooling(data=tanh1, pool_type="max",
kernel=(2,2), stride=(2,2))
# second conv
conv2 = mx.symbol.Convolution(data=pool1, kernel=(5,5), num_filter=50)
tanh2 = mx.symbol.Activation(data=conv2, act_type="tanh")
pool2 = mx.symbol.Pooling(data=tanh2, pool_type="max",
kernel=(2,2), stride=(2,2))
# first fullc
flatten = mx.symbol.Flatten(data=pool2)
fc1 = mx.symbol.FullyConnected(data=flatten, num_hidden=500)
tanh3 = mx.symbol.Activation(data=fc1, act_type="tanh")
# second fullc
fc2 = mx.symbol.FullyConnected(data=tanh3, num_hidden=10)
# loss
lenet = mx.symbol.SoftmaxOutput(data=fc2, name='softmax')
return lenet def get_iterator(data_shape):
def get_iterator_impl(args, kv):
data_dir = args.data_dir
"""
if '://' not in args.data_dir:
_download(args.data_dir)
"""
flat = False if len(data_shape) == 3 else True train = mx.io.MNISTIter(
image = data_dir + "train-images-idx3-ubyte",
label = data_dir + "train-labels-idx1-ubyte",
input_shape = data_shape,
batch_size = args.batch_size,
shuffle = True,
flat = flat,
num_parts = kv.num_workers,
part_index = kv.rank) val = mx.io.MNISTIter(
image = data_dir + "t10k-images-idx3-ubyte",
label = data_dir + "t10k-labels-idx1-ubyte",
input_shape = data_shape,
batch_size = args.batch_size,
flat = flat,
num_parts = kv.num_workers,
part_index = kv.rank) return (train, val)
return get_iterator_impl def parse_args():
parser = argparse.ArgumentParser(description='train an image classifer on mnist')
parser.add_argument('--network', type=str, default='mlp',
choices = ['mlp', 'lenet', 'lenet-stn'],
help = 'the cnn to use')
parser.add_argument('--data-dir', type=str, default='mnist/',
help='the input data directory')
parser.add_argument('--gpus', type=str,
help='the gpus will be used, e.g "0,1,2,3"')
parser.add_argument('--num-examples', type=int, default=60000,
help='the number of training examples')
parser.add_argument('--batch-size', type=int, default=128,
help='the batch size')
parser.add_argument('--lr', type=float, default=.1,
help='the initial learning rate')
parser.add_argument('--model-prefix', type=str,
help='the prefix of the model to load/save')
parser.add_argument('--save-model-prefix', type=str,
help='the prefix of the model to save')
parser.add_argument('--num-epochs', type=int, default=10,
help='the number of training epochs')
parser.add_argument('--load-epoch', type=int,
help="load the model on an epoch using the model-prefix")
parser.add_argument('--kv-store', type=str, default='local',
help='the kvstore type')
parser.add_argument('--lr-factor', type=float, default=1,
help='times the lr with a factor for every lr-factor-epoch epoch')
parser.add_argument('--lr-factor-epoch', type=float, default=1,
help='the number of epoch to factor the lr, could be .5')
return parser.parse_args(['--gpus', '0', '--data-dir', 'G:/OpenSource/mxnet/example/image-classification/mnist/']) if __name__ == '__main__':
args = parse_args() if args.network == 'mlp':
data_shape = (784, )
net = get_mlp()
elif args.network == 'lenet-stn':
data_shape = (1, 28, 28)
net = get_lenet(True)
else:
data_shape = (1, 28, 28)
net = get_lenet() # kvstore
kv = mx.kvstore.create(args.kv_store) # logging
head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s' logger = logging.getLogger()
formatter = logging.Formatter(head)
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setFormatter(formatter) logger.addHandler(stdout_handler) logger.setLevel(logging.INFO)
logger.info('start with arguments %s', args) # load model
model_prefix = args.model_prefix
if model_prefix is not None:
model_prefix += "-%d" % (kv.rank)
model_args = {}
if args.load_epoch is not None:
assert model_prefix is not None
tmp = mx.model.FeedForward.load(model_prefix, args.load_epoch)
model_args = {'arg_params' : tmp.arg_params,
'aux_params' : tmp.aux_params,
'begin_epoch' : args.load_epoch}
# save model
save_model_prefix = args.save_model_prefix
if save_model_prefix is None:
save_model_prefix = model_prefix
checkpoint = None if save_model_prefix is None else mx.callback.do_checkpoint(save_model_prefix) # data
(train, val) = get_iterator(data_shape)(args, kv) # train
devs = mx.cpu() if args.gpus is None else [
mx.gpu(int(i)) for i in args.gpus.split(',')] epoch_size = args.num_examples / args.batch_size if args.kv_store == 'dist_sync':
epoch_size /= kv.num_workers
model_args['epoch_size'] = epoch_size if 'lr_factor' in args and args.lr_factor < 1:
model_args['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
step = max(int(epoch_size * args.lr_factor_epoch), 1),
factor = args.lr_factor) if 'clip_gradient' in args and args.clip_gradient is not None:
model_args['clip_gradient'] = args.clip_gradient # disable kvstore for single device
if 'local' in kv.type and (
args.gpus is None or len(args.gpus.split(',')) is 1):
kv = None model = mx.model.FeedForward(
ctx = devs,
symbol = net,
num_epoch = args.num_epochs,
learning_rate = args.lr,
momentum = 0.9,
wd = 0.00001,
initializer = mx.init.Xavier(factor_type="in", magnitude=2.34),
**model_args) eval_metrics = ['accuracy']
## TopKAccuracy only allows top_k > 1
for top_k in [5, 10, 20]:
eval_metrics.append(mx.metric.create('top_k_accuracy', top_k = top_k)) model.fit(
X = train,
eval_data = val,
eval_metric = eval_metrics,
kvstore = kv,
batch_end_callback = [mx.callback.Speedometer(args.batch_size, 50)],
epoch_end_callback = checkpoint)
INFO:root:start with arguments Namespace(batch_size=128, data_dir='G:/OpenSource/mxnet/example/image-classification/mnist/', gpus='0', kv_store='local', load_epoch=None, lr=0.1, lr_factor=1, lr_factor_epoch=1, model_prefix=None, network='mlp', num_epochs=10, num_examples=60000, save_model_prefix=None)

2016-10-26 19:37:38,994 Node[0] start with arguments Namespace(batch_size=128, data_dir='G:/OpenSource/mxnet/example/image-classification/mnist/', gpus='0', kv_store='local', load_epoch=None, lr=0.1, lr_factor=1, lr_factor_epoch=1, model_prefix=None, network='mlp', num_epochs=10, num_examples=60000, save_model_prefix=None)

INFO:root:Start training with [gpu(0)]

2016-10-26 19:37:42,038 Node[0] Start training with [gpu(0)]

INFO:root:Epoch[0] Batch [50]   Speed: 23104.70 samples/sec Train-accuracy=0.687344

2016-10-26 19:37:45,351 Node[0] Epoch[0] Batch [50] Speed: 23104.70 samples/sec Train-accuracy=0.687344

INFO:root:Epoch[0] Batch [50]   Speed: 23104.70 samples/sec Train-top_k_accuracy_5=0.935937

2016-10-26 19:37:45,354 Node[0] Epoch[0] Batch [50] Speed: 23104.70 samples/sec Train-top_k_accuracy_5=0.935937

INFO:root:Epoch[0] Batch [50]   Speed: 23104.70 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:45,357 Node[0] Epoch[0] Batch [50] Speed: 23104.70 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Batch [50]   Speed: 23104.70 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:45,361 Node[0] Epoch[0] Batch [50] Speed: 23104.70 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[0] Batch [100]  Speed: 22535.22 samples/sec Train-accuracy=0.897188

2016-10-26 19:37:45,648 Node[0] Epoch[0] Batch [100]    Speed: 22535.22 samples/sec Train-accuracy=0.897188

INFO:root:Epoch[0] Batch [100]  Speed: 22535.22 samples/sec Train-top_k_accuracy_5=0.992812

2016-10-26 19:37:45,650 Node[0] Epoch[0] Batch [100]    Speed: 22535.22 samples/sec Train-top_k_accuracy_5=0.992812

INFO:root:Epoch[0] Batch [100]  Speed: 22535.22 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:45,651 Node[0] Epoch[0] Batch [100]    Speed: 22535.22 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Batch [100]  Speed: 22535.22 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:45,654 Node[0] Epoch[0] Batch [100]    Speed: 22535.22 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[0] Batch [150]  Speed: 23443.22 samples/sec Train-accuracy=0.919687

2016-10-26 19:37:45,930 Node[0] Epoch[0] Batch [150]    Speed: 23443.22 samples/sec Train-accuracy=0.919687

INFO:root:Epoch[0] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_5=0.995469

2016-10-26 19:37:45,930 Node[0] Epoch[0] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_5=0.995469

INFO:root:Epoch[0] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:45,933 Node[0] Epoch[0] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:45,934 Node[0] Epoch[0] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[0] Batch [200]  Speed: 24150.96 samples/sec Train-accuracy=0.927656

2016-10-26 19:37:46,200 Node[0] Epoch[0] Batch [200]    Speed: 24150.96 samples/sec Train-accuracy=0.927656

INFO:root:Epoch[0] Batch [200]  Speed: 24150.96 samples/sec Train-top_k_accuracy_5=0.997031

2016-10-26 19:37:46,203 Node[0] Epoch[0] Batch [200]    Speed: 24150.96 samples/sec Train-top_k_accuracy_5=0.997031

INFO:root:Epoch[0] Batch [200]  Speed: 24150.96 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:46,206 Node[0] Epoch[0] Batch [200]    Speed: 24150.96 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Batch [200]  Speed: 24150.96 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:46,210 Node[0] Epoch[0] Batch [200]    Speed: 24150.96 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[0] Batch [250]  Speed: 22145.33 samples/sec Train-accuracy=0.942031

2016-10-26 19:37:46,502 Node[0] Epoch[0] Batch [250]    Speed: 22145.33 samples/sec Train-accuracy=0.942031

INFO:root:Epoch[0] Batch [250]  Speed: 22145.33 samples/sec Train-top_k_accuracy_5=0.996875

2016-10-26 19:37:46,503 Node[0] Epoch[0] Batch [250]    Speed: 22145.33 samples/sec Train-top_k_accuracy_5=0.996875

INFO:root:Epoch[0] Batch [250]  Speed: 22145.33 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:46,509 Node[0] Epoch[0] Batch [250]    Speed: 22145.33 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Batch [250]  Speed: 22145.33 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:46,513 Node[0] Epoch[0] Batch [250]    Speed: 22145.33 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[0] Batch [300]  Speed: 25600.00 samples/sec Train-accuracy=0.940781

2016-10-26 19:37:46,766 Node[0] Epoch[0] Batch [300]    Speed: 25600.00 samples/sec Train-accuracy=0.940781

INFO:root:Epoch[0] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_5=0.997656

2016-10-26 19:37:46,767 Node[0] Epoch[0] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_5=0.997656

INFO:root:Epoch[0] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:46,769 Node[0] Epoch[0] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:46,770 Node[0] Epoch[0] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[0] Batch [350]  Speed: 25497.99 samples/sec Train-accuracy=0.943750

2016-10-26 19:37:47,025 Node[0] Epoch[0] Batch [350]    Speed: 25497.99 samples/sec Train-accuracy=0.943750

INFO:root:Epoch[0] Batch [350]  Speed: 25497.99 samples/sec Train-top_k_accuracy_5=0.998594

2016-10-26 19:37:47,026 Node[0] Epoch[0] Batch [350]    Speed: 25497.99 samples/sec Train-top_k_accuracy_5=0.998594

INFO:root:Epoch[0] Batch [350]  Speed: 25497.99 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:47,028 Node[0] Epoch[0] Batch [350]    Speed: 25497.99 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Batch [350]  Speed: 25497.99 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:47,029 Node[0] Epoch[0] Batch [350]    Speed: 25497.99 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[0] Batch [400]  Speed: 23970.04 samples/sec Train-accuracy=0.952344

2016-10-26 19:37:47,296 Node[0] Epoch[0] Batch [400]    Speed: 23970.04 samples/sec Train-accuracy=0.952344

INFO:root:Epoch[0] Batch [400]  Speed: 23970.04 samples/sec Train-top_k_accuracy_5=0.998594

2016-10-26 19:37:47,298 Node[0] Epoch[0] Batch [400]    Speed: 23970.04 samples/sec Train-top_k_accuracy_5=0.998594

INFO:root:Epoch[0] Batch [400]  Speed: 23970.04 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:47,299 Node[0] Epoch[0] Batch [400]    Speed: 23970.04 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Batch [400]  Speed: 23970.04 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:47,302 Node[0] Epoch[0] Batch [400]    Speed: 23970.04 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[0] Batch [450]  Speed: 27350.40 samples/sec Train-accuracy=0.952969

2016-10-26 19:37:47,539 Node[0] Epoch[0] Batch [450]    Speed: 27350.40 samples/sec Train-accuracy=0.952969

INFO:root:Epoch[0] Batch [450]  Speed: 27350.40 samples/sec Train-top_k_accuracy_5=0.998906

2016-10-26 19:37:47,542 Node[0] Epoch[0] Batch [450]    Speed: 27350.40 samples/sec Train-top_k_accuracy_5=0.998906

INFO:root:Epoch[0] Batch [450]  Speed: 27350.40 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:47,546 Node[0] Epoch[0] Batch [450]    Speed: 27350.40 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Batch [450]  Speed: 27350.40 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:47,548 Node[0] Epoch[0] Batch [450]    Speed: 27350.40 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[0] Resetting Data Iterator

2016-10-26 19:37:47,634 Node[0] Epoch[0] Resetting Data Iterator

INFO:root:Epoch[0] Time cost=3.100

2016-10-26 19:37:47,637 Node[0] Epoch[0] Time cost=3.100

INFO:root:Epoch[0] Validation-accuracy=0.960036

2016-10-26 19:37:47,826 Node[0] Epoch[0] Validation-accuracy=0.960036

INFO:root:Epoch[0] Validation-top_k_accuracy_5=0.998698

2016-10-26 19:37:47,828 Node[0] Epoch[0] Validation-top_k_accuracy_5=0.998698

INFO:root:Epoch[0] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:37:47,829 Node[0] Epoch[0] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[0] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:37:47,832 Node[0] Epoch[0] Validation-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Batch [50]   Speed: 25806.46 samples/sec Train-accuracy=0.955156

2016-10-26 19:37:48,085 Node[0] Epoch[1] Batch [50] Speed: 25806.46 samples/sec Train-accuracy=0.955156

INFO:root:Epoch[1] Batch [50]   Speed: 25806.46 samples/sec Train-top_k_accuracy_5=0.998594

2016-10-26 19:37:48,088 Node[0] Epoch[1] Batch [50] Speed: 25806.46 samples/sec Train-top_k_accuracy_5=0.998594

INFO:root:Epoch[1] Batch [50]   Speed: 25806.46 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:48,091 Node[0] Epoch[1] Batch [50] Speed: 25806.46 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Batch [50]   Speed: 25806.46 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:48,095 Node[0] Epoch[1] Batch [50] Speed: 25806.46 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Batch [100]  Speed: 27004.19 samples/sec Train-accuracy=0.957969

2016-10-26 19:37:48,334 Node[0] Epoch[1] Batch [100]    Speed: 27004.19 samples/sec Train-accuracy=0.957969

INFO:root:Epoch[1] Batch [100]  Speed: 27004.19 samples/sec Train-top_k_accuracy_5=0.998281

2016-10-26 19:37:48,335 Node[0] Epoch[1] Batch [100]    Speed: 27004.19 samples/sec Train-top_k_accuracy_5=0.998281

INFO:root:Epoch[1] Batch [100]  Speed: 27004.19 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:48,336 Node[0] Epoch[1] Batch [100]    Speed: 27004.19 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Batch [100]  Speed: 27004.19 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:48,338 Node[0] Epoch[1] Batch [100]    Speed: 27004.19 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Batch [150]  Speed: 23443.22 samples/sec Train-accuracy=0.962969

2016-10-26 19:37:48,612 Node[0] Epoch[1] Batch [150]    Speed: 23443.22 samples/sec Train-accuracy=0.962969

INFO:root:Epoch[1] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_5=0.999062

2016-10-26 19:37:48,615 Node[0] Epoch[1] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_5=0.999062

INFO:root:Epoch[1] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:48,618 Node[0] Epoch[1] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Batch [150]  Speed: 23443.22 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:48,619 Node[0] Epoch[1] Batch [150]    Speed: 23443.22 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Batch [200]  Speed: 26446.27 samples/sec Train-accuracy=0.964688

2016-10-26 19:37:48,864 Node[0] Epoch[1] Batch [200]    Speed: 26446.27 samples/sec Train-accuracy=0.964688

INFO:root:Epoch[1] Batch [200]  Speed: 26446.27 samples/sec Train-top_k_accuracy_5=0.999531

2016-10-26 19:37:48,865 Node[0] Epoch[1] Batch [200]    Speed: 26446.27 samples/sec Train-top_k_accuracy_5=0.999531

INFO:root:Epoch[1] Batch [200]  Speed: 26446.27 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:48,867 Node[0] Epoch[1] Batch [200]    Speed: 26446.27 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Batch [200]  Speed: 26446.27 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:48,868 Node[0] Epoch[1] Batch [200]    Speed: 26446.27 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Batch [250]  Speed: 28193.83 samples/sec Train-accuracy=0.967656

2016-10-26 19:37:49,096 Node[0] Epoch[1] Batch [250]    Speed: 28193.83 samples/sec Train-accuracy=0.967656

INFO:root:Epoch[1] Batch [250]  Speed: 28193.83 samples/sec Train-top_k_accuracy_5=0.998906

2016-10-26 19:37:49,098 Node[0] Epoch[1] Batch [250]    Speed: 28193.83 samples/sec Train-top_k_accuracy_5=0.998906

INFO:root:Epoch[1] Batch [250]  Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:49,101 Node[0] Epoch[1] Batch [250]    Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Batch [250]  Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:49,102 Node[0] Epoch[1] Batch [250]    Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Batch [300]  Speed: 24806.19 samples/sec Train-accuracy=0.962656

2016-10-26 19:37:49,364 Node[0] Epoch[1] Batch [300]    Speed: 24806.19 samples/sec Train-accuracy=0.962656

INFO:root:Epoch[1] Batch [300]  Speed: 24806.19 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:37:49,365 Node[0] Epoch[1] Batch [300]    Speed: 24806.19 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[1] Batch [300]  Speed: 24806.19 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:49,368 Node[0] Epoch[1] Batch [300]    Speed: 24806.19 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Batch [300]  Speed: 24806.19 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:49,369 Node[0] Epoch[1] Batch [300]    Speed: 24806.19 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Batch [350]  Speed: 27004.22 samples/sec Train-accuracy=0.966719

2016-10-26 19:37:49,608 Node[0] Epoch[1] Batch [350]    Speed: 27004.22 samples/sec Train-accuracy=0.966719

INFO:root:Epoch[1] Batch [350]  Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999062

2016-10-26 19:37:49,609 Node[0] Epoch[1] Batch [350]    Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999062

INFO:root:Epoch[1] Batch [350]  Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:49,611 Node[0] Epoch[1] Batch [350]    Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Batch [350]  Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:49,612 Node[0] Epoch[1] Batch [350]    Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Batch [400]  Speed: 27586.22 samples/sec Train-accuracy=0.970313

2016-10-26 19:37:49,846 Node[0] Epoch[1] Batch [400]    Speed: 27586.22 samples/sec Train-accuracy=0.970313

INFO:root:Epoch[1] Batch [400]  Speed: 27586.22 samples/sec Train-top_k_accuracy_5=0.999219

2016-10-26 19:37:49,848 Node[0] Epoch[1] Batch [400]    Speed: 27586.22 samples/sec Train-top_k_accuracy_5=0.999219

INFO:root:Epoch[1] Batch [400]  Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:49,851 Node[0] Epoch[1] Batch [400]    Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Batch [400]  Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:49,852 Node[0] Epoch[1] Batch [400]    Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Batch [450]  Speed: 26229.51 samples/sec Train-accuracy=0.969531

2016-10-26 19:37:50,099 Node[0] Epoch[1] Batch [450]    Speed: 26229.51 samples/sec Train-accuracy=0.969531

INFO:root:Epoch[1] Batch [450]  Speed: 26229.51 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:50,101 Node[0] Epoch[1] Batch [450]    Speed: 26229.51 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[1] Batch [450]  Speed: 26229.51 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:50,105 Node[0] Epoch[1] Batch [450]    Speed: 26229.51 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Batch [450]  Speed: 26229.51 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:50,109 Node[0] Epoch[1] Batch [450]    Speed: 26229.51 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[1] Resetting Data Iterator

2016-10-26 19:37:50,196 Node[0] Epoch[1] Resetting Data Iterator

INFO:root:Epoch[1] Time cost=2.364

2016-10-26 19:37:50,197 Node[0] Epoch[1] Time cost=2.364

INFO:root:Epoch[1] Validation-accuracy=0.968349

2016-10-26 19:37:50,381 Node[0] Epoch[1] Validation-accuracy=0.968349

INFO:root:Epoch[1] Validation-top_k_accuracy_5=0.999099

2016-10-26 19:37:50,382 Node[0] Epoch[1] Validation-top_k_accuracy_5=0.999099

INFO:root:Epoch[1] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:37:50,384 Node[0] Epoch[1] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[1] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:37:50,385 Node[0] Epoch[1] Validation-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Batch [50]   Speed: 27004.22 samples/sec Train-accuracy=0.971875

2016-10-26 19:37:50,635 Node[0] Epoch[2] Batch [50] Speed: 27004.22 samples/sec Train-accuracy=0.971875

INFO:root:Epoch[2] Batch [50]   Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999219

2016-10-26 19:37:50,638 Node[0] Epoch[2] Batch [50] Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999219

INFO:root:Epoch[2] Batch [50]   Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:50,644 Node[0] Epoch[2] Batch [50] Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Batch [50]   Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:50,644 Node[0] Epoch[2] Batch [50] Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Batch [100]  Speed: 27234.05 samples/sec Train-accuracy=0.971250

2016-10-26 19:37:50,881 Node[0] Epoch[2] Batch [100]    Speed: 27234.05 samples/sec Train-accuracy=0.971250

INFO:root:Epoch[2] Batch [100]  Speed: 27234.05 samples/sec Train-top_k_accuracy_5=0.999531

2016-10-26 19:37:50,882 Node[0] Epoch[2] Batch [100]    Speed: 27234.05 samples/sec Train-top_k_accuracy_5=0.999531

INFO:root:Epoch[2] Batch [100]  Speed: 27234.05 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:50,884 Node[0] Epoch[2] Batch [100]    Speed: 27234.05 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Batch [100]  Speed: 27234.05 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:50,887 Node[0] Epoch[2] Batch [100]    Speed: 27234.05 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Batch [150]  Speed: 26778.23 samples/sec Train-accuracy=0.970625

2016-10-26 19:37:51,127 Node[0] Epoch[2] Batch [150]    Speed: 26778.23 samples/sec Train-accuracy=0.970625

INFO:root:Epoch[2] Batch [150]  Speed: 26778.23 samples/sec Train-top_k_accuracy_5=0.999531

2016-10-26 19:37:51,128 Node[0] Epoch[2] Batch [150]    Speed: 26778.23 samples/sec Train-top_k_accuracy_5=0.999531

INFO:root:Epoch[2] Batch [150]  Speed: 26778.23 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:51,130 Node[0] Epoch[2] Batch [150]    Speed: 26778.23 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Batch [150]  Speed: 26778.23 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:51,131 Node[0] Epoch[2] Batch [150]    Speed: 26778.23 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Batch [200]  Speed: 27705.61 samples/sec Train-accuracy=0.974844

2016-10-26 19:37:51,364 Node[0] Epoch[2] Batch [200]    Speed: 27705.61 samples/sec Train-accuracy=0.974844

INFO:root:Epoch[2] Batch [200]  Speed: 27705.61 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:51,367 Node[0] Epoch[2] Batch [200]    Speed: 27705.61 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[2] Batch [200]  Speed: 27705.61 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:51,368 Node[0] Epoch[2] Batch [200]    Speed: 27705.61 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Batch [200]  Speed: 27705.61 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:51,371 Node[0] Epoch[2] Batch [200]    Speed: 27705.61 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Batch [250]  Speed: 24902.73 samples/sec Train-accuracy=0.975781

2016-10-26 19:37:51,631 Node[0] Epoch[2] Batch [250]    Speed: 24902.73 samples/sec Train-accuracy=0.975781

INFO:root:Epoch[2] Batch [250]  Speed: 24902.73 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:51,631 Node[0] Epoch[2] Batch [250]    Speed: 24902.73 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[2] Batch [250]  Speed: 24902.73 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:51,634 Node[0] Epoch[2] Batch [250]    Speed: 24902.73 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Batch [250]  Speed: 24902.73 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:51,635 Node[0] Epoch[2] Batch [250]    Speed: 24902.73 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Batch [300]  Speed: 25600.00 samples/sec Train-accuracy=0.973125

2016-10-26 19:37:51,887 Node[0] Epoch[2] Batch [300]    Speed: 25600.00 samples/sec Train-accuracy=0.973125

INFO:root:Epoch[2] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:51,890 Node[0] Epoch[2] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[2] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:51,894 Node[0] Epoch[2] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Batch [300]  Speed: 25600.00 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:51,895 Node[0] Epoch[2] Batch [300]    Speed: 25600.00 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Batch [350]  Speed: 27118.64 samples/sec Train-accuracy=0.975781

2016-10-26 19:37:52,134 Node[0] Epoch[2] Batch [350]    Speed: 27118.64 samples/sec Train-accuracy=0.975781

INFO:root:Epoch[2] Batch [350]  Speed: 27118.64 samples/sec Train-top_k_accuracy_5=0.999531

2016-10-26 19:37:52,137 Node[0] Epoch[2] Batch [350]    Speed: 27118.64 samples/sec Train-top_k_accuracy_5=0.999531

INFO:root:Epoch[2] Batch [350]  Speed: 27118.64 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:52,140 Node[0] Epoch[2] Batch [350]    Speed: 27118.64 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Batch [350]  Speed: 27118.64 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:52,141 Node[0] Epoch[2] Batch [350]    Speed: 27118.64 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Batch [400]  Speed: 26337.45 samples/sec Train-accuracy=0.977969

2016-10-26 19:37:52,385 Node[0] Epoch[2] Batch [400]    Speed: 26337.45 samples/sec Train-accuracy=0.977969

INFO:root:Epoch[2] Batch [400]  Speed: 26337.45 samples/sec Train-top_k_accuracy_5=0.999219

2016-10-26 19:37:52,387 Node[0] Epoch[2] Batch [400]    Speed: 26337.45 samples/sec Train-top_k_accuracy_5=0.999219

INFO:root:Epoch[2] Batch [400]  Speed: 26337.45 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:52,390 Node[0] Epoch[2] Batch [400]    Speed: 26337.45 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Batch [400]  Speed: 26337.45 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:52,391 Node[0] Epoch[2] Batch [400]    Speed: 26337.45 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Batch [450]  Speed: 25196.83 samples/sec Train-accuracy=0.977187

2016-10-26 19:37:52,647 Node[0] Epoch[2] Batch [450]    Speed: 25196.83 samples/sec Train-accuracy=0.977187

INFO:root:Epoch[2] Batch [450]  Speed: 25196.83 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:37:52,648 Node[0] Epoch[2] Batch [450]    Speed: 25196.83 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[2] Batch [450]  Speed: 25196.83 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:52,650 Node[0] Epoch[2] Batch [450]    Speed: 25196.83 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Batch [450]  Speed: 25196.83 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:52,651 Node[0] Epoch[2] Batch [450]    Speed: 25196.83 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[2] Resetting Data Iterator

2016-10-26 19:37:52,736 Node[0] Epoch[2] Resetting Data Iterator

INFO:root:Epoch[2] Time cost=2.345

2016-10-26 19:37:52,737 Node[0] Epoch[2] Time cost=2.345

INFO:root:Epoch[2] Validation-accuracy=0.973858

2016-10-26 19:37:52,903 Node[0] Epoch[2] Validation-accuracy=0.973858

INFO:root:Epoch[2] Validation-top_k_accuracy_5=0.999099

2016-10-26 19:37:52,905 Node[0] Epoch[2] Validation-top_k_accuracy_5=0.999099

INFO:root:Epoch[2] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:37:52,907 Node[0] Epoch[2] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[2] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:37:52,910 Node[0] Epoch[2] Validation-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Batch [50]   Speed: 27705.61 samples/sec Train-accuracy=0.977969

2016-10-26 19:37:53,147 Node[0] Epoch[3] Batch [50] Speed: 27705.61 samples/sec Train-accuracy=0.977969

INFO:root:Epoch[3] Batch [50]   Speed: 27705.61 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:53,148 Node[0] Epoch[3] Batch [50] Speed: 27705.61 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[3] Batch [50]   Speed: 27705.61 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:53,151 Node[0] Epoch[3] Batch [50] Speed: 27705.61 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Batch [50]   Speed: 27705.61 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:53,151 Node[0] Epoch[3] Batch [50] Speed: 27705.61 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Batch [100]  Speed: 26446.30 samples/sec Train-accuracy=0.978281

2016-10-26 19:37:53,395 Node[0] Epoch[3] Batch [100]    Speed: 26446.30 samples/sec Train-accuracy=0.978281

INFO:root:Epoch[3] Batch [100]  Speed: 26446.30 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:53,398 Node[0] Epoch[3] Batch [100]    Speed: 26446.30 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[3] Batch [100]  Speed: 26446.30 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:53,400 Node[0] Epoch[3] Batch [100]    Speed: 26446.30 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Batch [100]  Speed: 26446.30 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:53,401 Node[0] Epoch[3] Batch [100]    Speed: 26446.30 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Batch [150]  Speed: 26666.69 samples/sec Train-accuracy=0.977969

2016-10-26 19:37:53,642 Node[0] Epoch[3] Batch [150]    Speed: 26666.69 samples/sec Train-accuracy=0.977969

INFO:root:Epoch[3] Batch [150]  Speed: 26666.69 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:37:53,644 Node[0] Epoch[3] Batch [150]    Speed: 26666.69 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[3] Batch [150]  Speed: 26666.69 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:53,647 Node[0] Epoch[3] Batch [150]    Speed: 26666.69 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Batch [150]  Speed: 26666.69 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:53,648 Node[0] Epoch[3] Batch [150]    Speed: 26666.69 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Batch [200]  Speed: 26229.51 samples/sec Train-accuracy=0.980781

2016-10-26 19:37:53,894 Node[0] Epoch[3] Batch [200]    Speed: 26229.51 samples/sec Train-accuracy=0.980781

INFO:root:Epoch[3] Batch [200]  Speed: 26229.51 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:37:53,895 Node[0] Epoch[3] Batch [200]    Speed: 26229.51 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[3] Batch [200]  Speed: 26229.51 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:53,898 Node[0] Epoch[3] Batch [200]    Speed: 26229.51 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Batch [200]  Speed: 26229.51 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:53,900 Node[0] Epoch[3] Batch [200]    Speed: 26229.51 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Batch [250]  Speed: 26890.77 samples/sec Train-accuracy=0.979531

2016-10-26 19:37:54,141 Node[0] Epoch[3] Batch [250]    Speed: 26890.77 samples/sec Train-accuracy=0.979531

INFO:root:Epoch[3] Batch [250]  Speed: 26890.77 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:37:54,142 Node[0] Epoch[3] Batch [250]    Speed: 26890.77 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[3] Batch [250]  Speed: 26890.77 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:54,144 Node[0] Epoch[3] Batch [250]    Speed: 26890.77 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Batch [250]  Speed: 26890.77 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:54,145 Node[0] Epoch[3] Batch [250]    Speed: 26890.77 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Batch [300]  Speed: 27586.22 samples/sec Train-accuracy=0.979844

2016-10-26 19:37:54,378 Node[0] Epoch[3] Batch [300]    Speed: 27586.22 samples/sec Train-accuracy=0.979844

INFO:root:Epoch[3] Batch [300]  Speed: 27586.22 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:54,380 Node[0] Epoch[3] Batch [300]    Speed: 27586.22 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[3] Batch [300]  Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:54,381 Node[0] Epoch[3] Batch [300]    Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Batch [300]  Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:54,384 Node[0] Epoch[3] Batch [300]    Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Batch [350]  Speed: 27467.81 samples/sec Train-accuracy=0.979375

2016-10-26 19:37:54,618 Node[0] Epoch[3] Batch [350]    Speed: 27467.81 samples/sec Train-accuracy=0.979375

INFO:root:Epoch[3] Batch [350]  Speed: 27467.81 samples/sec Train-top_k_accuracy_5=0.999531

2016-10-26 19:37:54,621 Node[0] Epoch[3] Batch [350]    Speed: 27467.81 samples/sec Train-top_k_accuracy_5=0.999531

INFO:root:Epoch[3] Batch [350]  Speed: 27467.81 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:54,621 Node[0] Epoch[3] Batch [350]    Speed: 27467.81 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Batch [350]  Speed: 27467.81 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:54,622 Node[0] Epoch[3] Batch [350]    Speed: 27467.81 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Batch [400]  Speed: 27004.22 samples/sec Train-accuracy=0.982656

2016-10-26 19:37:54,862 Node[0] Epoch[3] Batch [400]    Speed: 27004.22 samples/sec Train-accuracy=0.982656

INFO:root:Epoch[3] Batch [400]  Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999531

2016-10-26 19:37:54,865 Node[0] Epoch[3] Batch [400]    Speed: 27004.22 samples/sec Train-top_k_accuracy_5=0.999531

INFO:root:Epoch[3] Batch [400]  Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:54,867 Node[0] Epoch[3] Batch [400]    Speed: 27004.22 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Batch [400]  Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:54,868 Node[0] Epoch[3] Batch [400]    Speed: 27004.22 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Batch [450]  Speed: 27586.19 samples/sec Train-accuracy=0.981094

2016-10-26 19:37:55,101 Node[0] Epoch[3] Batch [450]    Speed: 27586.19 samples/sec Train-accuracy=0.981094

INFO:root:Epoch[3] Batch [450]  Speed: 27586.19 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:37:55,104 Node[0] Epoch[3] Batch [450]    Speed: 27586.19 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[3] Batch [450]  Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:55,105 Node[0] Epoch[3] Batch [450]    Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Batch [450]  Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:55,107 Node[0] Epoch[3] Batch [450]    Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[3] Resetting Data Iterator

2016-10-26 19:37:55,191 Node[0] Epoch[3] Resetting Data Iterator

INFO:root:Epoch[3] Time cost=2.283

2016-10-26 19:37:55,194 Node[0] Epoch[3] Time cost=2.283

INFO:root:Epoch[3] Validation-accuracy=0.974359

2016-10-26 19:37:55,359 Node[0] Epoch[3] Validation-accuracy=0.974359

INFO:root:Epoch[3] Validation-top_k_accuracy_5=0.999199

2016-10-26 19:37:55,361 Node[0] Epoch[3] Validation-top_k_accuracy_5=0.999199

INFO:root:Epoch[3] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:37:55,362 Node[0] Epoch[3] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[3] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:37:55,364 Node[0] Epoch[3] Validation-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Batch [50]   Speed: 27586.19 samples/sec Train-accuracy=0.980938

2016-10-26 19:37:55,601 Node[0] Epoch[4] Batch [50] Speed: 27586.19 samples/sec Train-accuracy=0.980938

INFO:root:Epoch[4] Batch [50]   Speed: 27586.19 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:55,605 Node[0] Epoch[4] Batch [50] Speed: 27586.19 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[4] Batch [50]   Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:55,608 Node[0] Epoch[4] Batch [50] Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Batch [50]   Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:55,611 Node[0] Epoch[4] Batch [50] Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Batch [100]  Speed: 27586.19 samples/sec Train-accuracy=0.981406

2016-10-26 19:37:55,844 Node[0] Epoch[4] Batch [100]    Speed: 27586.19 samples/sec Train-accuracy=0.981406

INFO:root:Epoch[4] Batch [100]  Speed: 27586.19 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:37:55,845 Node[0] Epoch[4] Batch [100]    Speed: 27586.19 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[4] Batch [100]  Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:55,846 Node[0] Epoch[4] Batch [100]    Speed: 27586.19 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Batch [100]  Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:55,848 Node[0] Epoch[4] Batch [100]    Speed: 27586.19 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Batch [150]  Speed: 27118.64 samples/sec Train-accuracy=0.981875

2016-10-26 19:37:56,085 Node[0] Epoch[4] Batch [150]    Speed: 27118.64 samples/sec Train-accuracy=0.981875

INFO:root:Epoch[4] Batch [150]  Speed: 27118.64 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:37:56,088 Node[0] Epoch[4] Batch [150]    Speed: 27118.64 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[4] Batch [150]  Speed: 27118.64 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:56,089 Node[0] Epoch[4] Batch [150]    Speed: 27118.64 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Batch [150]  Speed: 27118.64 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:56,091 Node[0] Epoch[4] Batch [150]    Speed: 27118.64 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Batch [200]  Speed: 28571.43 samples/sec Train-accuracy=0.987187

2016-10-26 19:37:56,315 Node[0] Epoch[4] Batch [200]    Speed: 28571.43 samples/sec Train-accuracy=0.987187

INFO:root:Epoch[4] Batch [200]  Speed: 28571.43 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:37:56,318 Node[0] Epoch[4] Batch [200]    Speed: 28571.43 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[4] Batch [200]  Speed: 28571.43 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:56,319 Node[0] Epoch[4] Batch [200]    Speed: 28571.43 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Batch [200]  Speed: 28571.43 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:56,321 Node[0] Epoch[4] Batch [200]    Speed: 28571.43 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Batch [250]  Speed: 27350.43 samples/sec Train-accuracy=0.982812

2016-10-26 19:37:56,555 Node[0] Epoch[4] Batch [250]    Speed: 27350.43 samples/sec Train-accuracy=0.982812

INFO:root:Epoch[4] Batch [250]  Speed: 27350.43 samples/sec Train-top_k_accuracy_5=0.999531

2016-10-26 19:37:56,558 Node[0] Epoch[4] Batch [250]    Speed: 27350.43 samples/sec Train-top_k_accuracy_5=0.999531

INFO:root:Epoch[4] Batch [250]  Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:56,559 Node[0] Epoch[4] Batch [250]    Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Batch [250]  Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:56,559 Node[0] Epoch[4] Batch [250]    Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Batch [300]  Speed: 29493.09 samples/sec Train-accuracy=0.982969

2016-10-26 19:37:56,779 Node[0] Epoch[4] Batch [300]    Speed: 29493.09 samples/sec Train-accuracy=0.982969

INFO:root:Epoch[4] Batch [300]  Speed: 29493.09 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:37:56,780 Node[0] Epoch[4] Batch [300]    Speed: 29493.09 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[4] Batch [300]  Speed: 29493.09 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:56,782 Node[0] Epoch[4] Batch [300]    Speed: 29493.09 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Batch [300]  Speed: 29493.09 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:56,786 Node[0] Epoch[4] Batch [300]    Speed: 29493.09 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Batch [350]  Speed: 26016.25 samples/sec Train-accuracy=0.981563

2016-10-26 19:37:57,036 Node[0] Epoch[4] Batch [350]    Speed: 26016.25 samples/sec Train-accuracy=0.981563

INFO:root:Epoch[4] Batch [350]  Speed: 26016.25 samples/sec Train-top_k_accuracy_5=0.999531

2016-10-26 19:37:57,039 Node[0] Epoch[4] Batch [350]    Speed: 26016.25 samples/sec Train-top_k_accuracy_5=0.999531

INFO:root:Epoch[4] Batch [350]  Speed: 26016.25 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:57,040 Node[0] Epoch[4] Batch [350]    Speed: 26016.25 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Batch [350]  Speed: 26016.25 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:57,042 Node[0] Epoch[4] Batch [350]    Speed: 26016.25 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Batch [400]  Speed: 27118.66 samples/sec Train-accuracy=0.985000

2016-10-26 19:37:57,280 Node[0] Epoch[4] Batch [400]    Speed: 27118.66 samples/sec Train-accuracy=0.985000

INFO:root:Epoch[4] Batch [400]  Speed: 27118.66 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:37:57,282 Node[0] Epoch[4] Batch [400]    Speed: 27118.66 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[4] Batch [400]  Speed: 27118.66 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:57,285 Node[0] Epoch[4] Batch [400]    Speed: 27118.66 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Batch [400]  Speed: 27118.66 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:57,286 Node[0] Epoch[4] Batch [400]    Speed: 27118.66 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Batch [450]  Speed: 26446.30 samples/sec Train-accuracy=0.983281

2016-10-26 19:37:57,530 Node[0] Epoch[4] Batch [450]    Speed: 26446.30 samples/sec Train-accuracy=0.983281

INFO:root:Epoch[4] Batch [450]  Speed: 26446.30 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:37:57,532 Node[0] Epoch[4] Batch [450]    Speed: 26446.30 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[4] Batch [450]  Speed: 26446.30 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:57,533 Node[0] Epoch[4] Batch [450]    Speed: 26446.30 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Batch [450]  Speed: 26446.30 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:57,535 Node[0] Epoch[4] Batch [450]    Speed: 26446.30 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[4] Resetting Data Iterator

2016-10-26 19:37:57,615 Node[0] Epoch[4] Resetting Data Iterator

INFO:root:Epoch[4] Time cost=2.251

2016-10-26 19:37:57,617 Node[0] Epoch[4] Time cost=2.251

INFO:root:Epoch[4] Validation-accuracy=0.972456

2016-10-26 19:37:57,776 Node[0] Epoch[4] Validation-accuracy=0.972456

INFO:root:Epoch[4] Validation-top_k_accuracy_5=0.999299

2016-10-26 19:37:57,776 Node[0] Epoch[4] Validation-top_k_accuracy_5=0.999299

INFO:root:Epoch[4] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:37:57,779 Node[0] Epoch[4] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[4] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:37:57,779 Node[0] Epoch[4] Validation-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Batch [50]   Speed: 27705.63 samples/sec Train-accuracy=0.984219

2016-10-26 19:37:58,019 Node[0] Epoch[5] Batch [50] Speed: 27705.63 samples/sec Train-accuracy=0.984219

INFO:root:Epoch[5] Batch [50]   Speed: 27705.63 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:37:58,022 Node[0] Epoch[5] Batch [50] Speed: 27705.63 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[5] Batch [50]   Speed: 27705.63 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:58,023 Node[0] Epoch[5] Batch [50] Speed: 27705.63 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Batch [50]   Speed: 27705.63 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:58,025 Node[0] Epoch[5] Batch [50] Speed: 27705.63 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Batch [100]  Speed: 28193.83 samples/sec Train-accuracy=0.987344

2016-10-26 19:37:58,253 Node[0] Epoch[5] Batch [100]    Speed: 28193.83 samples/sec Train-accuracy=0.987344

INFO:root:Epoch[5] Batch [100]  Speed: 28193.83 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:37:58,255 Node[0] Epoch[5] Batch [100]    Speed: 28193.83 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[5] Batch [100]  Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:58,256 Node[0] Epoch[5] Batch [100]    Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Batch [100]  Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:58,257 Node[0] Epoch[5] Batch [100]    Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Batch [150]  Speed: 27947.62 samples/sec Train-accuracy=0.986094

2016-10-26 19:37:58,487 Node[0] Epoch[5] Batch [150]    Speed: 27947.62 samples/sec Train-accuracy=0.986094

INFO:root:Epoch[5] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_5=0.999531

2016-10-26 19:37:58,489 Node[0] Epoch[5] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_5=0.999531

INFO:root:Epoch[5] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:58,490 Node[0] Epoch[5] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:58,492 Node[0] Epoch[5] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Batch [200]  Speed: 28828.84 samples/sec Train-accuracy=0.987031

2016-10-26 19:37:58,714 Node[0] Epoch[5] Batch [200]    Speed: 28828.84 samples/sec Train-accuracy=0.987031

INFO:root:Epoch[5] Batch [200]  Speed: 28828.84 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:37:58,717 Node[0] Epoch[5] Batch [200]    Speed: 28828.84 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[5] Batch [200]  Speed: 28828.84 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:58,719 Node[0] Epoch[5] Batch [200]    Speed: 28828.84 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Batch [200]  Speed: 28828.84 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:58,720 Node[0] Epoch[5] Batch [200]    Speed: 28828.84 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Batch [250]  Speed: 28571.40 samples/sec Train-accuracy=0.984531

2016-10-26 19:37:58,946 Node[0] Epoch[5] Batch [250]    Speed: 28571.40 samples/sec Train-accuracy=0.984531

INFO:root:Epoch[5] Batch [250]  Speed: 28571.40 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:58,947 Node[0] Epoch[5] Batch [250]    Speed: 28571.40 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[5] Batch [250]  Speed: 28571.40 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:58,950 Node[0] Epoch[5] Batch [250]    Speed: 28571.40 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Batch [250]  Speed: 28571.40 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:58,953 Node[0] Epoch[5] Batch [250]    Speed: 28571.40 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Batch [300]  Speed: 27826.08 samples/sec Train-accuracy=0.985469

2016-10-26 19:37:59,184 Node[0] Epoch[5] Batch [300]    Speed: 27826.08 samples/sec Train-accuracy=0.985469

INFO:root:Epoch[5] Batch [300]  Speed: 27826.08 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:37:59,187 Node[0] Epoch[5] Batch [300]    Speed: 27826.08 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[5] Batch [300]  Speed: 27826.08 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:59,187 Node[0] Epoch[5] Batch [300]    Speed: 27826.08 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Batch [300]  Speed: 27826.08 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:59,188 Node[0] Epoch[5] Batch [300]    Speed: 27826.08 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Batch [350]  Speed: 28444.46 samples/sec Train-accuracy=0.983125

2016-10-26 19:37:59,415 Node[0] Epoch[5] Batch [350]    Speed: 28444.46 samples/sec Train-accuracy=0.983125

INFO:root:Epoch[5] Batch [350]  Speed: 28444.46 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:37:59,417 Node[0] Epoch[5] Batch [350]    Speed: 28444.46 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[5] Batch [350]  Speed: 28444.46 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:59,418 Node[0] Epoch[5] Batch [350]    Speed: 28444.46 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Batch [350]  Speed: 28444.46 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:59,421 Node[0] Epoch[5] Batch [350]    Speed: 28444.46 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Batch [400]  Speed: 28318.58 samples/sec Train-accuracy=0.987500

2016-10-26 19:37:59,648 Node[0] Epoch[5] Batch [400]    Speed: 28318.58 samples/sec Train-accuracy=0.987500

INFO:root:Epoch[5] Batch [400]  Speed: 28318.58 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:37:59,650 Node[0] Epoch[5] Batch [400]    Speed: 28318.58 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[5] Batch [400]  Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:59,651 Node[0] Epoch[5] Batch [400]    Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Batch [400]  Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:59,653 Node[0] Epoch[5] Batch [400]    Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Batch [450]  Speed: 28571.40 samples/sec Train-accuracy=0.987031

2016-10-26 19:37:59,880 Node[0] Epoch[5] Batch [450]    Speed: 28571.40 samples/sec Train-accuracy=0.987031

INFO:root:Epoch[5] Batch [450]  Speed: 28571.40 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:37:59,881 Node[0] Epoch[5] Batch [450]    Speed: 28571.40 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[5] Batch [450]  Speed: 28571.40 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:37:59,882 Node[0] Epoch[5] Batch [450]    Speed: 28571.40 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Batch [450]  Speed: 28571.40 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:37:59,884 Node[0] Epoch[5] Batch [450]    Speed: 28571.40 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[5] Resetting Data Iterator

2016-10-26 19:37:59,973 Node[0] Epoch[5] Resetting Data Iterator

INFO:root:Epoch[5] Time cost=2.194

2016-10-26 19:37:59,974 Node[0] Epoch[5] Time cost=2.194

INFO:root:Epoch[5] Validation-accuracy=0.974459

2016-10-26 19:38:00,132 Node[0] Epoch[5] Validation-accuracy=0.974459

INFO:root:Epoch[5] Validation-top_k_accuracy_5=0.999199

2016-10-26 19:38:00,134 Node[0] Epoch[5] Validation-top_k_accuracy_5=0.999199

INFO:root:Epoch[5] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:38:00,135 Node[0] Epoch[5] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[5] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:38:00,138 Node[0] Epoch[5] Validation-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Batch [50]   Speed: 29357.81 samples/sec Train-accuracy=0.990156

2016-10-26 19:38:00,361 Node[0] Epoch[6] Batch [50] Speed: 29357.81 samples/sec Train-accuracy=0.990156

INFO:root:Epoch[6] Batch [50]   Speed: 29357.81 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:00,364 Node[0] Epoch[6] Batch [50] Speed: 29357.81 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[6] Batch [50]   Speed: 29357.81 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:00,365 Node[0] Epoch[6] Batch [50] Speed: 29357.81 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Batch [50]   Speed: 29357.81 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:00,367 Node[0] Epoch[6] Batch [50] Speed: 29357.81 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Batch [100]  Speed: 26890.77 samples/sec Train-accuracy=0.989219

2016-10-26 19:38:00,605 Node[0] Epoch[6] Batch [100]    Speed: 26890.77 samples/sec Train-accuracy=0.989219

INFO:root:Epoch[6] Batch [100]  Speed: 26890.77 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:00,607 Node[0] Epoch[6] Batch [100]    Speed: 26890.77 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[6] Batch [100]  Speed: 26890.77 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:00,608 Node[0] Epoch[6] Batch [100]    Speed: 26890.77 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Batch [100]  Speed: 26890.77 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:00,609 Node[0] Epoch[6] Batch [100]    Speed: 26890.77 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Batch [150]  Speed: 27947.62 samples/sec Train-accuracy=0.989219

2016-10-26 19:38:00,839 Node[0] Epoch[6] Batch [150]    Speed: 27947.62 samples/sec Train-accuracy=0.989219

INFO:root:Epoch[6] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:00,842 Node[0] Epoch[6] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[6] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:00,842 Node[0] Epoch[6] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:00,845 Node[0] Epoch[6] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Batch [200]  Speed: 26890.74 samples/sec Train-accuracy=0.988281

2016-10-26 19:38:01,084 Node[0] Epoch[6] Batch [200]    Speed: 26890.74 samples/sec Train-accuracy=0.988281

INFO:root:Epoch[6] Batch [200]  Speed: 26890.74 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:38:01,088 Node[0] Epoch[6] Batch [200]    Speed: 26890.74 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[6] Batch [200]  Speed: 26890.74 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:01,088 Node[0] Epoch[6] Batch [200]    Speed: 26890.74 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Batch [200]  Speed: 26890.74 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:01,089 Node[0] Epoch[6] Batch [200]    Speed: 26890.74 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Batch [250]  Speed: 27947.59 samples/sec Train-accuracy=0.987969

2016-10-26 19:38:01,322 Node[0] Epoch[6] Batch [250]    Speed: 27947.59 samples/sec Train-accuracy=0.987969

INFO:root:Epoch[6] Batch [250]  Speed: 27947.59 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:01,323 Node[0] Epoch[6] Batch [250]    Speed: 27947.59 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[6] Batch [250]  Speed: 27947.59 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:01,325 Node[0] Epoch[6] Batch [250]    Speed: 27947.59 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Batch [250]  Speed: 27947.59 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:01,326 Node[0] Epoch[6] Batch [250]    Speed: 27947.59 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Batch [300]  Speed: 28070.18 samples/sec Train-accuracy=0.987187

2016-10-26 19:38:01,555 Node[0] Epoch[6] Batch [300]    Speed: 28070.18 samples/sec Train-accuracy=0.987187

INFO:root:Epoch[6] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:01,558 Node[0] Epoch[6] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[6] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:01,559 Node[0] Epoch[6] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:01,561 Node[0] Epoch[6] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Batch [350]  Speed: 27234.03 samples/sec Train-accuracy=0.981719

2016-10-26 19:38:01,798 Node[0] Epoch[6] Batch [350]    Speed: 27234.03 samples/sec Train-accuracy=0.981719

INFO:root:Epoch[6] Batch [350]  Speed: 27234.03 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:38:01,799 Node[0] Epoch[6] Batch [350]    Speed: 27234.03 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[6] Batch [350]  Speed: 27234.03 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:01,802 Node[0] Epoch[6] Batch [350]    Speed: 27234.03 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Batch [350]  Speed: 27234.03 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:01,803 Node[0] Epoch[6] Batch [350]    Speed: 27234.03 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Batch [400]  Speed: 28193.83 samples/sec Train-accuracy=0.987187

2016-10-26 19:38:02,032 Node[0] Epoch[6] Batch [400]    Speed: 28193.83 samples/sec Train-accuracy=0.987187

INFO:root:Epoch[6] Batch [400]  Speed: 28193.83 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:38:02,035 Node[0] Epoch[6] Batch [400]    Speed: 28193.83 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[6] Batch [400]  Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:02,036 Node[0] Epoch[6] Batch [400]    Speed: 28193.83 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Batch [400]  Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:02,038 Node[0] Epoch[6] Batch [400]    Speed: 28193.83 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Batch [450]  Speed: 28318.58 samples/sec Train-accuracy=0.988750

2016-10-26 19:38:02,265 Node[0] Epoch[6] Batch [450]    Speed: 28318.58 samples/sec Train-accuracy=0.988750

INFO:root:Epoch[6] Batch [450]  Speed: 28318.58 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:02,266 Node[0] Epoch[6] Batch [450]    Speed: 28318.58 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[6] Batch [450]  Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:02,269 Node[0] Epoch[6] Batch [450]    Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Batch [450]  Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:02,270 Node[0] Epoch[6] Batch [450]    Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[6] Resetting Data Iterator

2016-10-26 19:38:02,349 Node[0] Epoch[6] Resetting Data Iterator

INFO:root:Epoch[6] Time cost=2.214

2016-10-26 19:38:02,354 Node[0] Epoch[6] Time cost=2.214

INFO:root:Epoch[6] Validation-accuracy=0.975160

2016-10-26 19:38:02,510 Node[0] Epoch[6] Validation-accuracy=0.975160

INFO:root:Epoch[6] Validation-top_k_accuracy_5=0.999499

2016-10-26 19:38:02,512 Node[0] Epoch[6] Validation-top_k_accuracy_5=0.999499

INFO:root:Epoch[6] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:38:02,513 Node[0] Epoch[6] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[6] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:38:02,515 Node[0] Epoch[6] Validation-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Batch [50]   Speed: 30188.69 samples/sec Train-accuracy=0.989844

2016-10-26 19:38:02,733 Node[0] Epoch[7] Batch [50] Speed: 30188.69 samples/sec Train-accuracy=0.989844

INFO:root:Epoch[7] Batch [50]   Speed: 30188.69 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:38:02,736 Node[0] Epoch[7] Batch [50] Speed: 30188.69 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[7] Batch [50]   Speed: 30188.69 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:02,736 Node[0] Epoch[7] Batch [50] Speed: 30188.69 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Batch [50]   Speed: 30188.69 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:02,739 Node[0] Epoch[7] Batch [50] Speed: 30188.69 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Batch [100]  Speed: 27350.43 samples/sec Train-accuracy=0.990781

2016-10-26 19:38:02,973 Node[0] Epoch[7] Batch [100]    Speed: 27350.43 samples/sec Train-accuracy=0.990781

INFO:root:Epoch[7] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:02,974 Node[0] Epoch[7] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[7] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:02,976 Node[0] Epoch[7] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:02,977 Node[0] Epoch[7] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Batch [150]  Speed: 27947.62 samples/sec Train-accuracy=0.988125

2016-10-26 19:38:03,207 Node[0] Epoch[7] Batch [150]    Speed: 27947.62 samples/sec Train-accuracy=0.988125

INFO:root:Epoch[7] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:38:03,210 Node[0] Epoch[7] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[7] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:03,210 Node[0] Epoch[7] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Batch [150]  Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:03,211 Node[0] Epoch[7] Batch [150]    Speed: 27947.62 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Batch [200]  Speed: 28070.18 samples/sec Train-accuracy=0.985625

2016-10-26 19:38:03,441 Node[0] Epoch[7] Batch [200]    Speed: 28070.18 samples/sec Train-accuracy=0.985625

INFO:root:Epoch[7] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:03,444 Node[0] Epoch[7] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[7] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:03,444 Node[0] Epoch[7] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:03,446 Node[0] Epoch[7] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Batch [250]  Speed: 27705.63 samples/sec Train-accuracy=0.989219

2016-10-26 19:38:03,677 Node[0] Epoch[7] Batch [250]    Speed: 27705.63 samples/sec Train-accuracy=0.989219

INFO:root:Epoch[7] Batch [250]  Speed: 27705.63 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:03,680 Node[0] Epoch[7] Batch [250]    Speed: 27705.63 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[7] Batch [250]  Speed: 27705.63 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:03,680 Node[0] Epoch[7] Batch [250]    Speed: 27705.63 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Batch [250]  Speed: 27705.63 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:03,683 Node[0] Epoch[7] Batch [250]    Speed: 27705.63 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Batch [300]  Speed: 28070.18 samples/sec Train-accuracy=0.988125

2016-10-26 19:38:03,911 Node[0] Epoch[7] Batch [300]    Speed: 28070.18 samples/sec Train-accuracy=0.988125

INFO:root:Epoch[7] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:03,914 Node[0] Epoch[7] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[7] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:03,915 Node[0] Epoch[7] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Batch [300]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:03,917 Node[0] Epoch[7] Batch [300]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Batch [350]  Speed: 28318.58 samples/sec Train-accuracy=0.989531

2016-10-26 19:38:04,144 Node[0] Epoch[7] Batch [350]    Speed: 28318.58 samples/sec Train-accuracy=0.989531

INFO:root:Epoch[7] Batch [350]  Speed: 28318.58 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:04,144 Node[0] Epoch[7] Batch [350]    Speed: 28318.58 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[7] Batch [350]  Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:04,147 Node[0] Epoch[7] Batch [350]    Speed: 28318.58 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Batch [350]  Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:04,148 Node[0] Epoch[7] Batch [350]    Speed: 28318.58 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Batch [400]  Speed: 30331.76 samples/sec Train-accuracy=0.987812

2016-10-26 19:38:04,361 Node[0] Epoch[7] Batch [400]    Speed: 30331.76 samples/sec Train-accuracy=0.987812

INFO:root:Epoch[7] Batch [400]  Speed: 30331.76 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:38:04,362 Node[0] Epoch[7] Batch [400]    Speed: 30331.76 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[7] Batch [400]  Speed: 30331.76 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:04,365 Node[0] Epoch[7] Batch [400]    Speed: 30331.76 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Batch [400]  Speed: 30331.76 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:04,367 Node[0] Epoch[7] Batch [400]    Speed: 30331.76 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Batch [450]  Speed: 27826.08 samples/sec Train-accuracy=0.990000

2016-10-26 19:38:04,598 Node[0] Epoch[7] Batch [450]    Speed: 27826.08 samples/sec Train-accuracy=0.990000

INFO:root:Epoch[7] Batch [450]  Speed: 27826.08 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:04,599 Node[0] Epoch[7] Batch [450]    Speed: 27826.08 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[7] Batch [450]  Speed: 27826.08 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:04,601 Node[0] Epoch[7] Batch [450]    Speed: 27826.08 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Batch [450]  Speed: 27826.08 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:04,604 Node[0] Epoch[7] Batch [450]    Speed: 27826.08 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[7] Resetting Data Iterator

2016-10-26 19:38:04,687 Node[0] Epoch[7] Resetting Data Iterator

INFO:root:Epoch[7] Time cost=2.172

2016-10-26 19:38:04,690 Node[0] Epoch[7] Time cost=2.172

INFO:root:Epoch[7] Validation-accuracy=0.977564

2016-10-26 19:38:04,842 Node[0] Epoch[7] Validation-accuracy=0.977564

INFO:root:Epoch[7] Validation-top_k_accuracy_5=0.999599

2016-10-26 19:38:04,845 Node[0] Epoch[7] Validation-top_k_accuracy_5=0.999599

INFO:root:Epoch[7] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:38:04,845 Node[0] Epoch[7] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[7] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:38:04,848 Node[0] Epoch[7] Validation-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Batch [50]   Speed: 29629.65 samples/sec Train-accuracy=0.990469

2016-10-26 19:38:05,069 Node[0] Epoch[8] Batch [50] Speed: 29629.65 samples/sec Train-accuracy=0.990469

INFO:root:Epoch[8] Batch [50]   Speed: 29629.65 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:05,072 Node[0] Epoch[8] Batch [50] Speed: 29629.65 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[8] Batch [50]   Speed: 29629.65 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:05,072 Node[0] Epoch[8] Batch [50] Speed: 29629.65 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Batch [50]   Speed: 29629.65 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:05,075 Node[0] Epoch[8] Batch [50] Speed: 29629.65 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Batch [100]  Speed: 28699.55 samples/sec Train-accuracy=0.988594

2016-10-26 19:38:05,299 Node[0] Epoch[8] Batch [100]    Speed: 28699.55 samples/sec Train-accuracy=0.988594

INFO:root:Epoch[8] Batch [100]  Speed: 28699.55 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:05,299 Node[0] Epoch[8] Batch [100]    Speed: 28699.55 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[8] Batch [100]  Speed: 28699.55 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:05,302 Node[0] Epoch[8] Batch [100]    Speed: 28699.55 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Batch [100]  Speed: 28699.55 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:05,303 Node[0] Epoch[8] Batch [100]    Speed: 28699.55 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Batch [150]  Speed: 28070.18 samples/sec Train-accuracy=0.990313

2016-10-26 19:38:05,533 Node[0] Epoch[8] Batch [150]    Speed: 28070.18 samples/sec Train-accuracy=0.990313

INFO:root:Epoch[8] Batch [150]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:05,536 Node[0] Epoch[8] Batch [150]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[8] Batch [150]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:05,538 Node[0] Epoch[8] Batch [150]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Batch [150]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:05,539 Node[0] Epoch[8] Batch [150]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Batch [200]  Speed: 29223.73 samples/sec Train-accuracy=0.991250

2016-10-26 19:38:05,759 Node[0] Epoch[8] Batch [200]    Speed: 29223.73 samples/sec Train-accuracy=0.991250

INFO:root:Epoch[8] Batch [200]  Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:05,762 Node[0] Epoch[8] Batch [200]    Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[8] Batch [200]  Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:05,763 Node[0] Epoch[8] Batch [200]    Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Batch [200]  Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:05,766 Node[0] Epoch[8] Batch [200]    Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Batch [250]  Speed: 26016.25 samples/sec Train-accuracy=0.987969

2016-10-26 19:38:06,016 Node[0] Epoch[8] Batch [250]    Speed: 26016.25 samples/sec Train-accuracy=0.987969

INFO:root:Epoch[8] Batch [250]  Speed: 26016.25 samples/sec Train-top_k_accuracy_5=0.999844

2016-10-26 19:38:06,017 Node[0] Epoch[8] Batch [250]    Speed: 26016.25 samples/sec Train-top_k_accuracy_5=0.999844

INFO:root:Epoch[8] Batch [250]  Speed: 26016.25 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:06,019 Node[0] Epoch[8] Batch [250]    Speed: 26016.25 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Batch [250]  Speed: 26016.25 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:06,022 Node[0] Epoch[8] Batch [250]    Speed: 26016.25 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Batch [300]  Speed: 29223.73 samples/sec Train-accuracy=0.990313

2016-10-26 19:38:06,242 Node[0] Epoch[8] Batch [300]    Speed: 29223.73 samples/sec Train-accuracy=0.990313

INFO:root:Epoch[8] Batch [300]  Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:06,243 Node[0] Epoch[8] Batch [300]    Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[8] Batch [300]  Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:06,244 Node[0] Epoch[8] Batch [300]    Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Batch [300]  Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:06,246 Node[0] Epoch[8] Batch [300]    Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Batch [350]  Speed: 29223.73 samples/sec Train-accuracy=0.988750

2016-10-26 19:38:06,467 Node[0] Epoch[8] Batch [350]    Speed: 29223.73 samples/sec Train-accuracy=0.988750

INFO:root:Epoch[8] Batch [350]  Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:06,469 Node[0] Epoch[8] Batch [350]    Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[8] Batch [350]  Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:06,470 Node[0] Epoch[8] Batch [350]    Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Batch [350]  Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:06,471 Node[0] Epoch[8] Batch [350]    Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Batch [400]  Speed: 29223.73 samples/sec Train-accuracy=0.991250

2016-10-26 19:38:06,693 Node[0] Epoch[8] Batch [400]    Speed: 29223.73 samples/sec Train-accuracy=0.991250

INFO:root:Epoch[8] Batch [400]  Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:06,694 Node[0] Epoch[8] Batch [400]    Speed: 29223.73 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[8] Batch [400]  Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:06,696 Node[0] Epoch[8] Batch [400]    Speed: 29223.73 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Batch [400]  Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:06,697 Node[0] Epoch[8] Batch [400]    Speed: 29223.73 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Batch [450]  Speed: 27350.43 samples/sec Train-accuracy=0.989844

2016-10-26 19:38:06,931 Node[0] Epoch[8] Batch [450]    Speed: 27350.43 samples/sec Train-accuracy=0.989844

INFO:root:Epoch[8] Batch [450]  Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:06,934 Node[0] Epoch[8] Batch [450]    Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[8] Batch [450]  Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:06,934 Node[0] Epoch[8] Batch [450]    Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Batch [450]  Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:06,937 Node[0] Epoch[8] Batch [450]    Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[8] Resetting Data Iterator

2016-10-26 19:38:07,016 Node[0] Epoch[8] Resetting Data Iterator

INFO:root:Epoch[8] Time cost=2.169

2016-10-26 19:38:07,017 Node[0] Epoch[8] Time cost=2.169

INFO:root:Epoch[8] Validation-accuracy=0.976863

2016-10-26 19:38:07,174 Node[0] Epoch[8] Validation-accuracy=0.976863

INFO:root:Epoch[8] Validation-top_k_accuracy_5=0.999700

2016-10-26 19:38:07,174 Node[0] Epoch[8] Validation-top_k_accuracy_5=0.999700

INFO:root:Epoch[8] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:38:07,177 Node[0] Epoch[8] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[8] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:38:07,177 Node[0] Epoch[8] Validation-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Batch [50]   Speed: 29906.54 samples/sec Train-accuracy=0.990625

2016-10-26 19:38:07,398 Node[0] Epoch[9] Batch [50] Speed: 29906.54 samples/sec Train-accuracy=0.990625

INFO:root:Epoch[9] Batch [50]   Speed: 29906.54 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:07,400 Node[0] Epoch[9] Batch [50] Speed: 29906.54 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[9] Batch [50]   Speed: 29906.54 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:07,403 Node[0] Epoch[9] Batch [50] Speed: 29906.54 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Batch [50]   Speed: 29906.54 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:07,404 Node[0] Epoch[9] Batch [50] Speed: 29906.54 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Batch [100]  Speed: 27350.43 samples/sec Train-accuracy=0.987969

2016-10-26 19:38:07,641 Node[0] Epoch[9] Batch [100]    Speed: 27350.43 samples/sec Train-accuracy=0.987969

INFO:root:Epoch[9] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:07,641 Node[0] Epoch[9] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[9] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:07,644 Node[0] Epoch[9] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Batch [100]  Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:07,644 Node[0] Epoch[9] Batch [100]    Speed: 27350.43 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Batch [150]  Speed: 28444.46 samples/sec Train-accuracy=0.990469

2016-10-26 19:38:07,871 Node[0] Epoch[9] Batch [150]    Speed: 28444.46 samples/sec Train-accuracy=0.990469

INFO:root:Epoch[9] Batch [150]  Speed: 28444.46 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:07,874 Node[0] Epoch[9] Batch [150]    Speed: 28444.46 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[9] Batch [150]  Speed: 28444.46 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:07,875 Node[0] Epoch[9] Batch [150]    Speed: 28444.46 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Batch [150]  Speed: 28444.46 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:07,877 Node[0] Epoch[9] Batch [150]    Speed: 28444.46 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Batch [200]  Speed: 28070.18 samples/sec Train-accuracy=0.992969

2016-10-26 19:38:08,105 Node[0] Epoch[9] Batch [200]    Speed: 28070.18 samples/sec Train-accuracy=0.992969

INFO:root:Epoch[9] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:08,108 Node[0] Epoch[9] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[9] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:08,111 Node[0] Epoch[9] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Batch [200]  Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:08,111 Node[0] Epoch[9] Batch [200]    Speed: 28070.18 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Batch [250]  Speed: 27586.22 samples/sec Train-accuracy=0.992344

2016-10-26 19:38:08,345 Node[0] Epoch[9] Batch [250]    Speed: 27586.22 samples/sec Train-accuracy=0.992344

INFO:root:Epoch[9] Batch [250]  Speed: 27586.22 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:08,348 Node[0] Epoch[9] Batch [250]    Speed: 27586.22 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[9] Batch [250]  Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:08,349 Node[0] Epoch[9] Batch [250]    Speed: 27586.22 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Batch [250]  Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:08,351 Node[0] Epoch[9] Batch [250]    Speed: 27586.22 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Batch [300]  Speed: 28070.16 samples/sec Train-accuracy=0.989062

2016-10-26 19:38:08,581 Node[0] Epoch[9] Batch [300]    Speed: 28070.16 samples/sec Train-accuracy=0.989062

INFO:root:Epoch[9] Batch [300]  Speed: 28070.16 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:08,582 Node[0] Epoch[9] Batch [300]    Speed: 28070.16 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[9] Batch [300]  Speed: 28070.16 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:08,584 Node[0] Epoch[9] Batch [300]    Speed: 28070.16 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Batch [300]  Speed: 28070.16 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:08,585 Node[0] Epoch[9] Batch [300]    Speed: 28070.16 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Batch [350]  Speed: 28699.55 samples/sec Train-accuracy=0.989531

2016-10-26 19:38:08,809 Node[0] Epoch[9] Batch [350]    Speed: 28699.55 samples/sec Train-accuracy=0.989531

INFO:root:Epoch[9] Batch [350]  Speed: 28699.55 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:08,812 Node[0] Epoch[9] Batch [350]    Speed: 28699.55 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[9] Batch [350]  Speed: 28699.55 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:08,813 Node[0] Epoch[9] Batch [350]    Speed: 28699.55 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Batch [350]  Speed: 28699.55 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:08,815 Node[0] Epoch[9] Batch [350]    Speed: 28699.55 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Batch [400]  Speed: 28571.43 samples/sec Train-accuracy=0.989375

2016-10-26 19:38:09,040 Node[0] Epoch[9] Batch [400]    Speed: 28571.43 samples/sec Train-accuracy=0.989375

INFO:root:Epoch[9] Batch [400]  Speed: 28571.43 samples/sec Train-top_k_accuracy_5=0.999687

2016-10-26 19:38:09,042 Node[0] Epoch[9] Batch [400]    Speed: 28571.43 samples/sec Train-top_k_accuracy_5=0.999687

INFO:root:Epoch[9] Batch [400]  Speed: 28571.43 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:09,043 Node[0] Epoch[9] Batch [400]    Speed: 28571.43 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Batch [400]  Speed: 28571.43 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:09,046 Node[0] Epoch[9] Batch [400]    Speed: 28571.43 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Batch [450]  Speed: 28828.81 samples/sec Train-accuracy=0.991406

2016-10-26 19:38:09,269 Node[0] Epoch[9] Batch [450]    Speed: 28828.81 samples/sec Train-accuracy=0.991406

INFO:root:Epoch[9] Batch [450]  Speed: 28828.81 samples/sec Train-top_k_accuracy_5=1.000000

2016-10-26 19:38:09,270 Node[0] Epoch[9] Batch [450]    Speed: 28828.81 samples/sec Train-top_k_accuracy_5=1.000000

INFO:root:Epoch[9] Batch [450]  Speed: 28828.81 samples/sec Train-top_k_accuracy_10=1.000000

2016-10-26 19:38:09,272 Node[0] Epoch[9] Batch [450]    Speed: 28828.81 samples/sec Train-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Batch [450]  Speed: 28828.81 samples/sec Train-top_k_accuracy_20=1.000000

2016-10-26 19:38:09,273 Node[0] Epoch[9] Batch [450]    Speed: 28828.81 samples/sec Train-top_k_accuracy_20=1.000000

INFO:root:Epoch[9] Resetting Data Iterator

2016-10-26 19:38:09,355 Node[0] Epoch[9] Resetting Data Iterator

INFO:root:Epoch[9] Time cost=2.179

2016-10-26 19:38:09,358 Node[0] Epoch[9] Time cost=2.179

INFO:root:Epoch[9] Validation-accuracy=0.973958

2016-10-26 19:38:09,522 Node[0] Epoch[9] Validation-accuracy=0.973958

INFO:root:Epoch[9] Validation-top_k_accuracy_5=0.999299

2016-10-26 19:38:09,523 Node[0] Epoch[9] Validation-top_k_accuracy_5=0.999299

INFO:root:Epoch[9] Validation-top_k_accuracy_10=1.000000

2016-10-26 19:38:09,525 Node[0] Epoch[9] Validation-top_k_accuracy_10=1.000000

INFO:root:Epoch[9] Validation-top_k_accuracy_20=1.000000

2016-10-26 19:38:09,526 Node[0] Epoch[9] Validation-top_k_accuracy_20=1.000000

可以看到,验证集上的准确率接近于1,这说明我们的安装过程是成功的。 总结一下期间遇到的错误: 1.CMake Error: The following variables are used in this project, but they are set to NOTFOUND. Please set them or make sure they are set and tested correctly in the CMake files: CUDA_cublas_LIBRARY (ADVANCED) linked by target "mxnet" in directory G:/OpenSource/mxnet linked by target "mxnet" in directory G:/OpenSource/mxnet CUDA_cublas_device_LIBRARY (ADVANCED) linked by target "mxnet" in directory G:/OpenSource/mxnet linked by target "mxnet" in directory G:/OpenSource/mxnet CUDA_curand_LIBRARY (ADVANCED) linked by target "mxnet" in directory G:/OpenSource/mxnet linked by target "mxnet" in directory G:/OpenSource/mxnet 解决方法: 参考github上的issue,换成64位编译器。 2.无法打开包括文件:opencv2.hpp 解决方法: 在项目属性页的VC++标签页中的包含目录选项中加入opencv的头文件路径G:\opencv\build\include即可。 3.错误 5373 error LNK2001: 无法解析的外部符号 "int __cdecl cv::_interlockedExchangeAdd(int *,int)"(?_interlockedExchangeAdd@cv@@YAHPEAHH@Z) 解决方法: 在项目属性页的标签页中的链接器下的附加依赖项属性中加入opencv的库文件G:\opencv\build\x64\vc12\lib\opencv_core2413.lib

参考

1.mxnet配置安装 2.https://github.com/dmlc/mxnet/issues/655

Windows安装mxnet的更多相关文章

  1. Ubuntu16 编译源码安装MXNet 可变卷积Deformable-ConvNets GPU版

    [引言]最近接手了公司的关于虫子识别的项目,使用MXNet框架开发,但是实际用的是Deformable-ConvNets. Deformable-ConvNets为微软研究研究院提出的可变卷积网络,可 ...

  2. Mysql(windows)安装

    h3 { color: rgb(255, 255, 255); background-color: rgb(30,144,255); padding: 3px; margin: 10px 0px } ...

  3. Windows 安装JRuby 生成 war 到 tomcat 运行

    Windows安装JRuby Rails 直接下载 JRuby,不装 Ruby. http://jruby.org/download 该安装包可以配好环境变量 %JRUBY_HOME% 等 安装 bu ...

  4. windows安装rabbitmq

    官网下载windows安装版本:http://www.rabbitmq.com/install-windows.html ,安装文件rabbitmq-server-3.6.5.exe 前提:安装erl ...

  5. windows 安装 mongodb

    windows 安装 mongodb 下载 首先到官网下载合适的安装包,下载地址为 https://www.mongodb.com/download-center MongoDB for Window ...

  6. 2016 windows安装phing:安装成功

    21:39 2016/7/212016 windows安装phing:安装成功注意:出现错误时就去更新pear:参见:http://www.cnblogs.com/pinnasky/archive/2 ...

  7. Windows安装和使用zookeeper

    之前整理过一篇文章<zookeeper 分布式锁服务>,本文介绍的 Zookeeper 是以 3.4.5 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apach ...

  8. windows 安装mysql 步骤

    Windows 安装mysql 5.7.12教程 1.在官网下载mysql5.7.12.zip并解压 复制默认配置文件my-default.ini,并命名为my.ini 使用记事本打开,修改如下配置 ...

  9. DOCKER windows安装

    DOCKER windows安装 1.下载程序包 2. 设置环境变量 3. 启动DOCKERT 4. 分析start.sh 5. 利用SSH工具管理 6. 下载镜像 6.1 下载地址 6.2 用FTP ...

随机推荐

  1. 17.linux下root用户与普通用户

    默认安装完成之后并不知道root用户的密码,那么如何应用root权限呢? (1)sudo 命令   这样输入当前管理员用户密码就可以得到超级用户的权限.但默认的情况下5分钟root权限就失效了. (2 ...

  2. High Memory in the Linux Kernel

    This is enabled via the PAE (Physical Address Extension) extension of the PentiumPro processors. PAE ...

  3. HBase的伪分布式安装(原创)

    准备工作: 1)安装了伪分布式hadoop:参照http://blog.csdn.net/zolalad/article/details/11472207 2)修改已安装好的hadoop配置文件: a ...

  4. smarty 模板的入门使用

    <?php require_once 'inc/libs/Smarty.class.php'; $s=new Smarty(); // echo $s::SMARTY_VERSION; // e ...

  5. jq实现全选、全不选、反选

    基本思路: 1全选:点击全选按钮的时候,将input的属性checked设置为true; 2全不选:点击全不选按钮的时候,将input的属性checked设置为false; 3反选:点击反选按钮的时候 ...

  6. STL中的set容器的一点总结

    1.关于set C++ STL 之所以得到广泛的赞誉,也被很多人使用,不只是提供了像vector, string, list等方便的容器,更重要的是STL封装了许多复杂的数据结构算法和大量常用数据结构 ...

  7. Loadrunner开发测试脚本

    Loadrunner开发测试脚本 开发测试脚本可以通过录制,也可以手动开发,建议能录制的尽量录制,省时省力,不能录制的只能费力自己开发了,具体看项目情况来决定. 使用Loadrunner开发脚本过程中 ...

  8. EntityFrameWork 使用时碰到的小问题

    EntityFrameWork 使用时碰到的小问题 1,在使用orm访问数据库的相目里,也要引用EntityFrameWork.dll,否则无法使用orm 否则,编译错误 错误 5 "Sys ...

  9. Matlab Map

    http://blog.csdn.net/yuzhiyuxia/article/details/7305225 >> weekmap = containers.Map({'Monday', ...

  10. WAP端 touch事件触发顺序记录

    IOS7.0 safari 滚动滚动条的时候, 最后手指放开 (scroll 总是在 touchend后面,所以要用 setTimeout) touchstart touchmove(多个) touc ...