用redis当作LRU缓存
原文地址:https://redis.io/topics/lru-cache
Redis可以用来作缓存,他可以很方便的淘汰(删除)旧数据添加新数据,类似memcached。LRU只是其中的一种置换算法,这篇文章介绍了maxmemory配置命令和LRU算法的一些深入讨论,这里的LRU只是一种近似LRU(并不是严格的把最老的数据淘汰,而是使用随机采样的方式)。从4.0开始Redis引入了一种新的淘汰算法LFU(Least Frequently Used)。
maxmemory配置命令
maxmemory配置命令用来指定Redis存储数据的大小,可以在redis.conf里配置,也可以运行的时候用CONFIG SET配置。比如配置成使用100M内存,配置命令如下
|
如果把maxmemory设置成0就是不对内存使用量做限制。在64位系统上默认是设置成0,在32位系统上默认设置成3GB。如果达到了限制内存,会根据配置采取不同的策略,可以给相应的命令返回错误,也可以淘汰旧数据来存入新数据。
淘汰策略
在配置文件里使用maxmemory-policy命令指定淘汰策略,取值如下
- noeviction:达到限制内存以后再存新数据会返回出错。
- allkeys-lru:淘汰最近没使用的数据。
- volatile-lru:在设置了过期值(expire)的数据里淘汰最近没使用的数据。
- allkeys-random:随机淘汰数据。
- volatile-random:在设置了过期值(expire)的数据里随机淘汰数据。
- volatile-ttl:在设置了过期值(expire)的数据里淘汰快要过期的数据。
volatile-lru,volatile-random和volatile-ttl在没有可淘汰的数据的时候也会像noeviction一样返回出错。怎样选择淘汰策略取决于你的程序,也可以在使用的过程中用INFO命令观察命中率再做调整。一般情况按如下方法选择淘汰策略:
- 如果所存储的数据访问量成幂律分布的,也就是说一部分数据的访问量明显多于其他数据,那么就使用allkeys-lru。
- 如果所存储的数据周期访问的,或者被访问的概率大致相同,那么就是用allkeys-random。
- 如果所存储的数据设置了不同的过期时间,可以用volatile-ttl。
如果在一个redis实例里存储了两种数据(永久数据和带过期时间的数据),使用volatile-lru和volatile-random是比较好的选择。当然更好的办法是把这两种数据分别存在一个redis实例里。给数据设置过期时间是需要消耗内存的,所以使用allkeys-lru会更节省内存。
淘汰数据的过程
- 客户端请求添加数据。
- redis检查内存是否超过了maxmemory限制,如果超过了就根据策略淘汰旧数据。
- 添加客户端要求的添加的数据。
所以内存使用量会一直在maxmemory上下徘徊,如果某个命令要求添加一个很大的数据很可能造成redis使用的内存明显超过了maxmemory限制。
近似LRU算法
redis的LRU没有严格的实现LRU,也就是说redis不是淘汰最佳(最久没访问)的数据。redis会做一个随机采样,淘汰样本里最佳数据。3.0以后redis会使用备选池做淘汰,提升了性能,准确性更高,更接近LRU算法(代码里提升性能很明显,准确率更高这点看不出来,可能官方做统计得出的结论)。可以设置样本大小调整算法的准确率。
|
redis没用真正的LRU实现是因为这正的LRU太消耗内存了,要遍历排序,会慢很多。下图是近似LRU算法和真正的LRU算法的测试对比图

测试的时候先生成一些数据。从第一个数据开始存储,一直到最后一个,所以第一个数据是LRU算法的最佳淘汰对象。最后又添加50%的数据用来淘汰旧数据。上面的三个色带分别是:
- 浅灰色是淘汰的数据
- 灰色是没有淘汰的数据
- 绿色是新添加的数据。
理论上最先添加的一半数据应该淘汰,redis的LRU算法只是概率性的淘汰这些旧数据。可以看出来在maxmemory-samples设置成5的时候3.0版本比2.8版本更精确(相对来说更接近理论值)。maxmemory-samples设置成10的时候3.0版本已经相对接近理论值了。
LRU只是预测将来一段时间的数据访问模型,如果你的数据成幂律分布redis的LRU也能非常好的处理这个模型。 redis的LRU和真正的LRU差距非常小甚至没差距。如果想要更接近LRU可以提高样本采集量把maxmemory-samples设置成10。
新的近似LFU模式
从4.0开始redis引入了一个新的淘汰模型LFU(Least Frequently Used)。一些情况下这个模型在命中率上更会准确。LFU会统计数据的使用率,使用率低的会被淘汰,使用率高的留下。LRU会保留最近访问了但是平常访问率很低的数据,风险就是淘汰了一个平常访问率高但是最近没访问的数据。LFU不会存在这样的问题,所以LFU更适用于各种不同的访问模型。LFU策略配置如下:
- volatile-lfu:在设置了过期时间的数据里使用近似LFU淘汰算法。
- allkeys-lfu:在所有的数据上使用LFU淘汰算法。
LFU和LRU类似也是一种概率计算,LFU使用一个叫morris counter的概率统计方法,一个数据只使用几个比特。和一个叫过期时间(decay period)的数结合使用。统计值(counter)随着时间减小。LFU也是使用采样的方式淘汰数据。LFU有更多的调整选项,4.0默认的配置
- 一百万访问量会使统计值(counter)变为最大
- 衰败期是一分钟
这些是经过测试比较好用的,用户也可以自己设置。配置命令如下:
|
一个比较特殊的用法是衰败期设置成0,每次统计都会衰败,这是个比较少用的方法。指数因子用来指定多大的访问量会是统计值变为最大,统计值范围0-255。指数因子越大需要越多的访问量使统计值变为最大,指数因子越小访问量低的时候分辨率越高。
|
所以指数因子需要在分辨率和高访问之间做一个折中。redis.conf里有更详细的说明。
近似LFU算法
- 取一个0到1之间的随机值R
- 计算P=1/(old_value*lfu_log_factor+1),这里的old_value就是上面说的counter值。
- 当R<P的时候counter加一。
不是学数学的不会证明这个算法,但是看起来这个算法本身不难,也是用的概率的方法,访问量和counter值之间大概是指数关系,用的时候参考上面那个表就行了。
用redis当作LRU缓存的更多相关文章
- Redis学习笔记2-使用 Redis 作为 LRU 缓存
当 Redis 作为缓存使用时,当你添加新的数据时,有时候很方便使 Redis 自动回收老的数据.LRU 实际上是被唯一支持的数据移除方法.Redis 的 maxmemory 指令,用于限制内存使用到 ...
- Redis - 作为 LRU 缓存
一.简介 LRU 实际上是被唯一支持的数据移除方法,同时也是 memcached 默认支持的缓存算法. 二.配置内存大小 在 redis.conf 文件中使用 maxmemory 指令能够配置内存大小 ...
- Redis作为lru缓存作用
当 Redis 作为缓存使用时,当你添加新的数据时,有时候很方便使 Redis 自动回收老的数据.LRU 实际上是被唯一支持的数据移除方法.Redis 的 maxmemory 指令,用于限制内存使用到 ...
- redis(7)LRU缓存
一.LRU简介 LRU是Least Recently Used的缩写,即:最近最少使用. 它是内存管理中的一种页面置换算法,对于在内存中但是又不用的数据块,操作系统会根据哪些数据属于LRU而将其移除内 ...
- Redis做LRU缓存
当Redis用作缓存时,通常可以让它在添加新数据时自动逐出旧数据. 这种行为在开发人员社区中非常有名,因为它是流行的memcached系统的默认行为. LRU实际上只是支持的驱逐方法之一. 本页介绍了 ...
- redis文档翻译_LRU缓存
Using Redis as an LRU cache使用Redis作为LRU缓存 出处:http://blog.csdn.net/column/details/redisbanli.html Whe ...
- 动手实现 LRU 算法,以及 Caffeine 和 Redis 中的缓存淘汰策略
我是风筝,公众号「古时的风筝」. 文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在里面. 那天我在 LeetCode 上刷到一道 LRU 缓存机制的问题, ...
- 在我们使用Redis作为一个LRU缓存的时候,怎么做才能更高效
当用Redis作为一个LRU存储时,有些时候是比较方便的,在你增添新的数据时会自动驱逐旧的数据.这种行为在开发者论坛是非常有名的,因为这是流行的memcached系统的默认行为. LRU实际上只是支持 ...
- Redis只作为缓存,不做持久化的配置
#1.配置缓存内存限制和清理策略 #作为缓存服务器,如果不加以限制内存的话,就很有可能出现将整台服务器内存都耗光的情况,可以在redis的配置文件里面设置: #example: # 限定最多使用1.5 ...
随机推荐
- 用Python实现十大经典排序算法-插入、选择、快速、冒泡、归并等
本文来用图文的方式详细讲解了Python十大经典排序算法 —— 插入排序.选择排序.快速排序.冒泡排序.归并排序.希尔排序.插入排序.桶排序.基数排序.计数排序算法,想要学习的你们,继续阅读下去吧,如 ...
- 2018.12.30【NOIP提高组】模拟赛C组总结
2018.12.30[NOIP提高组]模拟赛C组总结 今天成功回归开始做比赛 感觉十分良(zhōng)好(chà). 统计数字(count.pas/c/cpp) 字符串的展开(expand.pas/c ...
- .NET Core表达式树的梳理
最近要重写公司自己开发的ORM框架:其中有一部分就是查询的动态表达式:于是对这方面的东西做了一个简单的梳理 官网的解释: 表达式树以树形数据结构表示代码,其中每一个节点都是一种表达式,比如方法调用和 ...
- Azure Storage 系列(五)通过Azure.Cosmos.Table 类库在.Net 上使用 Table Storage
一,引言 上一篇文章我们在.NET 项目中添加了 “WindowsAzure.Storage” 的 NuGet 包进行操作Table 数据,但是使用的 “WindowsAzure.Storage” ...
- $\TeX$ Gyre 字体安装过程与问题解决
目录 安装过程 1. 下载字体包 2. 安装字体 3. 测试范例文件 本文地址 https://www.cnblogs.com/oberon-zjt0806/p/13672426.html 本文只是一 ...
- 1. spring5源码 -- Spring整体脉络 IOC加载过程 Bean的生命周期
可以学习到什么? 0. spring整体脉络 1. 描述BeanFactory 2. BeanFactory和ApplicationContext的区别 3. 简述SpringIoC的加载过程 4. ...
- 复习 | 重温jQuery和Zepto的API
jq和zepto很相似有许多共同的api,zepto也出了很多与jq不一样的api,总的来说,两者更相似,但是zepto更轻量一点,正好公司也在用,复习这两个没错 jq中的zepto的事件和ajax我 ...
- es创建普通索引以及各种查询
创建索引 创建普通索引: PUT /my_index { "settings": { "index": { "number_of_shards&quo ...
- Linux系统编程—进程间同步
我们知道,线程间同步有多种方式,比如:信号量.互斥量.读写锁,等等.那进程间如何实现同步呢?本文介绍两种方式:互斥量和文件锁. 互斥量mutex 我们已经知道了互斥量可以用于在线程间同步,但实际上,互 ...
- C++获取运行程序当前目录
1 HMODULE GetSelfModuleHandle() 2 { 3 MEMORY_BASIC_INFORMATION mbi; 4 return ((::VirtualQuery(GetSel ...