可以先去考虑没有\(1 \times 1\)的砖块的情况,对于最后一个位置只有两种情况,一个是竖着用一块砖铺设\(2 \times 1\),另一个为横着用两块砖铺设\(2 \times 2\)。

设没有\(1 \times 1\)的砖块的情况铺\(2 \times n\)的路的方案数为\(F_n\),根据上面的分析得\(F_n=F_{n-1}+F_{n-2}\),发现其为斐波那契数列。

用同样的方法考虑有\(1 \times 1\)的砖块的情况,设\(f_n\)表示按题意铺\(2 \times n\)的路的方案数,当最后的位置没有\(1 \times 1\)的砖块的影响时,其也是有两种放置情况,也就是说\(f_{i-1}\)和\(f_{i-2}\)对\(f_i\)都有贡献。

当最后一个位置需要铺设为\(1 \times 1\)的砖块时,可以发现该砖块到另一个砖块的区间的铺设情况是唯一的,所以这种情况决定方案数的是这两个\(1 \times 1\)的砖块形成的区间之前的\(2 \times 1\)砖块铺设情况。因此我们得:

\[f_i=f_{i-1}+f_{i-2}+2\sum_{j=0}^{i-3}F_j
\]

设\(S_i=\sum\limits_ {j=0}^{i}F_j\),得\(f_i=f_{i-1}+f_{i-2}+2S_{i-3}\)

然后就可以递推来求解了,但是发现\(n\)很大,所以用矩阵快速幂来加速递推。

设矩阵\(\begin{bmatrix} f_i&f_{i-1}&F_{i-2}&F_{i-3}&S_{i-3}\end{bmatrix}
\quad\),经过分析得,将其转移到\(\begin{bmatrix} f_{i+1}&f_i&F_{i-1}&F_{i-2}&S_{i-2}\end{bmatrix}
\quad\)的转移矩阵为:

\[
\begin{bmatrix}

1&1&0&0&0\\
1&0&0&0&0\\
2&0&1&1&1\\
0&0&1&0&0\\
2&0&0&0&1\\

\end{bmatrix}
\quad
\]

然后每次询问矩阵快速幂一下就好了。

\(code:\)

#include<bits/stdc++.h>
#define p 1000000007
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
ll T,n;
struct matrix
{
ll a[6][6];
matrix()
{
memset(a,0,sizeof(a));
}
}m,ans;
matrix operator *(const matrix &a,const matrix &b)
{
matrix c;
for(int i=0;i<5;++i)
for(int j=0;j<5;++j)
for(int k=0;k<5;++k)
c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j]%p+p)%p;
return c;
}
matrix qp(matrix x,ll y)
{
matrix e;
for(int i=0;i<5;++i) e.a[i][i]=1;
while(y)
{
if(y&1) e=e*x;
x=x*x,y>>=1;
}
return e;
}
ll m1[6][6]=
{
{2,0,1,1,1}
};
ll m2[6][6]=
{
{1,1,0,0,0},
{1,0,0,0,0},
{2,0,1,1,1},
{0,0,1,0,0},
{2,0,0,0,1}
};
int main()
{
read(T);
memcpy(ans.a,m1,sizeof(ans.a));
memcpy(m.a,m2,sizeof(m.a));
while(T--)
{
read(n);
if(n<3) puts("0");
else printf("%lld\n",(ans*qp(m,n-3)).a[0][0]);
}
return 0;
}

题解 洛谷 P5303 【[GXOI/GZOI2019]逼死强迫症】的更多相关文章

  1. P5303 [GXOI/GZOI2019]逼死强迫症

    题目地址:P5303 [GXOI/GZOI2019]逼死强迫症 这里是官方题解 初步分析 从题目和数据范围很容易看出来这是一个递推 + 矩阵快速幂,那么主要问题在于递推的过程. 满足条件的答案一定是以 ...

  2. luogu P5303 [GXOI/GZOI2019]逼死强迫症

    传送门 只有两行,考虑递推,设\(f_i\)为没有那两个\(1*1\)的,前\(i\)列的方案,可以发现一次可以放一个竖的或两个横的,也就是\(f_i=f_{i-1}+f_{i-2}\) 再设\(g_ ...

  3. 【BZOJ5505】[GXOI/GZOI2019]逼死强迫症(矩阵快速幂)

    [BZOJ5505][GXOI/GZOI2019]逼死强迫症(矩阵快速幂) 题面 BZOJ 洛谷 题解 如果没有那两个\(1*1\)的东西,答案就是斐波那契数,可以简单的用\(dp\)得到. 大概是设 ...

  4. [LOJ3086][GXOI/GZOI2019]逼死强迫症——递推+矩阵乘法

    题目链接: [GXOI/GZOI2019]逼死强迫症 设$f[i][j]$表示前$i$列有$j$个$1*1$的格子的方案数,那么可以列出递推式子: $f[i][0]=f[i-1][0]+f[i-2][ ...

  5. 洛谷 P5304 [GXOI/GZOI2019]旅行者(最短路)

    洛谷:传送门 bzoj:传送门 参考资料: [1]:https://xht37.blog.luogu.org/p5304-gxoigzoi2019-lv-xing-zhe [2]:http://www ...

  6. 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)

    LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...

  7. [洛谷P5304][GXOI/GZOI2019]旅行者

    题目大意: 有一张 \(n(n\leqslant10^5)\) 个点 \(m(m\leqslant5\times10^5)\) 条边的有向有正权图,有$k(2\leqslant k\leqslant ...

  8. [GXOI/GZOI2019]逼死强迫症

    题目 设我们最后的答案是\(g_n\) 我们发现在最后竖着放一个\(2\times 1\)的,和横着放两个\(1\times 2\)的就可以区分开之前的方案了 所以如果仅仅使用\(1\times 2\ ...

  9. 【详●析】[GXOI/GZOI2019]逼死强迫症

    [详●析][GXOI/GZOI2019]逼死强迫症 脑子不够用了... [题目大意] 在\(2\times N\)的方格中用\(N-1\)块\(2\times 1\)的方砖和\(2\)块\(1\tim ...

随机推荐

  1. 微信小程序 wx:if 多条件判断

    <view wx:if="{{a}}">单个条件</view> <view wx:if="{{a || b}}">多个或条件 ...

  2. vueX基础知识点笔记

    vuex是专门用来管理vue.js应用程序中状态的一个插件.他的作用是将应用中的所有状态都放在一起, 集中式来管理.需要声明的是,这里所说的状态指的是vue组件中data里面的属性.简单的来说, 它就 ...

  3. python文件处理-根据csv文件内容,将对应图像拷贝到指定文件夹

    内容涉及:文件遍历,读取csv指定列,拷贝文件,清理和创建文件 # -*- coding: utf-8 -*- import csv import os import sys import numpy ...

  4. electron打造桌面应用

    Electron 将网页打包成桌面应用(web页面生成exe) http://m.blog.csdn.net/u014563989/article/details/75045052 Electron学 ...

  5. 阿里云Linux CentOS8.1 64位服务器安装LNMP(Linux+Nginx+MySQL+PHP)

    LNMP环境和软件版本: 名称 版本号 查询命令 Linux系统 CentOS Linux release 8.1.1911 (Core) cat /etc/redhat-release Nginx ...

  6. 记一次解密wireshark抓取的冰蝎通信流量

    一.关于冰蝎 1.1 简单介绍 冰蝎是一款基于Java开发的动态加密通信流量的新型Webshell客户端.老牌 Webshell 管理神器——中国菜刀的攻击流量特征明显,容易被各类安全设备检测,实际场 ...

  7. POJ 3463 Sightseeing 题解

    题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...

  8. Golden Tiger Claw,题解

    题目链接 题目: 题意: 找到和最小的两个序列a,b满足对于任意i,j有a[i]+b[j]>=c[i][j](矩阵c给出). 分析: 首先很容易看出来要使这题要用KM算法,为啥呢?因为要最小化a ...

  9. NIVIDIA Tegra K1 QWT安装使用问题和解决办法

    在Linux系统下,Tegra K1(ARM体系),只有QtCreator的环境下,去安装Qwt6.1.0: 下载: 系统安装好之后,直接联网在系统自带的软件安装程序中搜索Qt,安装Qt5.2.1,之 ...

  10. scrapy爬取海量数据并保存在MongoDB和MySQL数据库中

    前言 一般我们都会将数据爬取下来保存在临时文件或者控制台直接输出,但对于超大规模数据的快速读写,高并发场景的访问,用数据库管理无疑是不二之选.首先简单描述一下MySQL和MongoDB的区别:MySQ ...