业务场景

在很多项目中,都有类似数据汇总的业务场景,查询今日注册会员数,在线会员数,订单总金额,支出总金额等。。。这些业务通常都不是存在同一张表中,我们需要依次查询出来然后封装成所需要的对象返回给前端。那么在此过程中,就可以把这个接口中“大任务”拆分成N个小任务,异步执行这些小任务,等到最后一个小任务执行完,把所有任务的执行结果封装到返回结果中,统一返回到前端展示。

同步执行

首先看看同步执行的代码

public class Test {

    @Data
@NoArgsConstructor
@AllArgsConstructor
@ToString
class Result {
/**
* 在线人数
*/
Integer onlineUser; /**
* 注册人数
*/
Integer registered; /**
* 订单总额
*/
BigDecimal orderAmount; /**
* 支出总额
*/
BigDecimal outlayAmount;
} @org.junit.Test
public void collect() {
System.out.println("数据汇总开始");
long startTime = System.currentTimeMillis();
Integer onlineUser = queryOnlineUser();
Integer registered = queryRegistered();
BigDecimal orderAmount = queryOrderAmount();
BigDecimal outlayAmount = queryOutlayAmount();
Result result = new Result(onlineUser, registered, orderAmount, outlayAmount);
long endTime = System.currentTimeMillis();
System.out.println("获取汇总数据结束,result = " + result);
System.out.println("总耗时 = " + (endTime - startTime) + "毫秒");
} public Integer queryOnlineUser() {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("查询在线人数 耗时2秒");
return 10;
} public Integer queryRegistered() {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("查询注册人数 耗时2秒");
return 10086;
} public BigDecimal queryOrderAmount() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("查询订单总额 耗时3秒");
return BigDecimal.valueOf(2000);
} public BigDecimal queryOutlayAmount() {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("查询支出总额 耗时3秒");
return BigDecimal.valueOf(1000);
} }

执行时长想必大家都能够想得到,理所应当是10秒以上

数据汇总开始
查询在线人数 耗时2秒
查询注册人数 耗时2秒
查询订单总额 耗时3秒
查询支出总额 耗时3秒
获取汇总数据结束,result = Test.Result(onlineUser=10, registered=10086, orderAmount=2000, outlayAmount=1000)
总耗时 = 10008毫秒

异步执行

下面换成异步执行,用java8的parallelStream(并行流),这里为什么不用Thread呢,这里有一个注意点,我们需要获取所有所有子任务执行完的时间点,在这个时间点之后才能将结果封装返回,Thread没有办法满足,这里parallelStream和函数式接口就登场了。

java8的特性之一 —— lambda表达式,就是配合函数式接口使用的。

java8内置了四大核心函数式接口:

1、Consumer<T>   : 消费型接口    void accept(T t);

2、Supplier<T>      : 供给型接口    T get();

3、Function<T,R>   : 函数型接口    R apply(T t);

4、Predicate<T>    : 断言型接口    boolean test(T t);

这四大核心函数式接口其下还有很多子接口,基本上能满足日常项目所用,这里扯远了。。   直接上代码。

这里我们需要使用的是Runable接口,是无参无返回值的一个接口。在实际场景中,可能有时间范围之类的查询参数的,则可以根据不同业务使用不同的接口。这种方式也可以用Future接口去实现,有兴趣的可以试一试,这里就不多做叙述了。

@org.junit.Test
public void collect() {
System.out.println("数据汇总开始");
long startTime = System.currentTimeMillis();
Result result = new Result();
List<Runnable> taskList = new ArrayList<Runnable>() {
{
add(() -> result.setOnlineUser(queryOnlineUser()));
add(() -> result.setRegistered(queryRegistered()));
add(() -> result.setOrderAmount(queryOrderAmount()));
add(() -> result.setOutlayAmount(queryOutlayAmount()));
}
};
taskList.parallelStream().forEach(v -> v.run());
long endTime = System.currentTimeMillis();
System.out.println("获取汇总数据结束,result = " + result);
System.out.println("总耗时 = " + (endTime - startTime) + "毫秒");
}

执行结果,由于四个子任务都是并行的,效率直接提升了三倍,如果子任务越多的话提升效果越明显。

数据汇总开始
查询在线人数 耗时2秒
查询注册人数 耗时2秒
查询订单总额 耗时3秒
查询支出总额 耗时3秒
获取汇总数据结束,result = Test.Result(onlineUser=10, registered=10086, orderAmount=2000, outlayAmount=1000)
总耗时 = 3079毫秒

总结

1.parallelStream是异步编程的好帮手,在使用过程中一定要注意线程安全的问题。

2.以上这种方式只能用在没有事务的业务中,因为在多线程中,事务是不共享的。

java8的parallelStream提升数倍查询效率的更多相关文章

  1. java8中parallelStream提升数倍查询效率是怎样实现的,来看看这篇文章

    作者:我恰芙蓉王 原文:https://www.cnblogs.com/-tang/p/13283216.html 业务场景 在很多项目中,都有类似数据汇总的业务场景,查询今日注册会员数,在线会员数, ...

  2. 分布式协同AI基准测试项目Ianvs:工业场景提升5倍研发效率

    摘要:全场景可扩展的分布式协同AI基准测试项目 Ianvs(雅努斯),能为算法及服务开发者提供全面开发套件支持,以研发.衡量和优化分布式协同AI系统. 本文分享自华为云社区<KubeEdge|分 ...

  3. MySQL 5.7 优化SQL提升100倍执行效率的深度思考(GO)

    系统环境:微软云Linux DS12系列.Centos6.5 .MySQL 5.7.10.生产环境,step1,step2是案例,精彩的剖析部分在step3,step4. 1.慢sql语句大概需要13 ...

  4. atitit.提升2--3倍开发效率--cbb体系的建设..

    atitit.提升开发效率--cbb体系的建设.. #--提升倍数,大概2--3倍.. #---cbb的内容 知识的,expt的,经验的技术的部件的问题库的角度.. #---cbb的层次,tech l ...

  5. 可以提升3倍开发效率的 Intellij IDEA快捷键大全汇总(2019)

    整理了一下IDEA的常用快捷键,可以打印出来或者弄成图片设置为桌面,为广大的程序员们节省更多的时间去谈恋爱. 常用快捷键1 Ctrl+Shift + Enter,语句完成 “!”,否定完成,输入表达式 ...

  6. 阿里云SaaS加速器“宜搭”发布宜搭Plus提升6倍研发效率

    9月26日,在杭州云栖大会上,阿里云SaaS加速器的“底座”——“宜搭”正式发布“宜搭Plus”低代码开发平台.开发复杂企业业务系统所需要的领域数据模型.逻辑&服务编排.专业UI页面设计等,都 ...

  7. 查询效率提升10倍!3种优化方案,帮你解决MySQL深分页问题

    开发经常遇到分页查询的需求,但是当翻页过多的时候,就会产生深分页,导致查询效率急剧下降. 有没有什么办法,能解决深分页的问题呢? 本文总结了三种优化方案,查询效率直接提升10倍,一起学习一下. 1. ...

  8. 使用Apache Spark 对 mysql 调优 查询速度提升10倍以上

    在这篇文章中我们将讨论如何利用 Apache Spark 来提升 MySQL 的查询性能. 介绍 在我的前一篇文章Apache Spark with MySQL 中介绍了如何利用 Apache Spa ...

  9. PostgreSQL LIKE 查询效率提升实验<转>

    一.未做索引的查询效率 作为对比,先对未索引的查询做测试 EXPLAIN ANALYZE select * from gallery_map where author = '曹志耘'; QUERY P ...

随机推荐

  1. RocketMQ系列(五)广播与延迟消息

    今天要给大家介绍RocketMQ中的两个功能,一个是"广播",这个功能是比较基础的,几乎所有的mq产品都是支持这个功能的:另外一个是"延迟消费",这个应该算是R ...

  2. char 型变量中能不能存贮一个中文汉字?为什么?

    在c语言中,char类型占一个字节,而汉字占两个字节,所以不能存储. 在java语言中,char类型占两个字节,而java默认采用Unicode码是16位,所以一个Unicode码占两个字节,java ...

  3. 附020.Nginx-ingress部署及使用

    一 手动部署-官网版 1.1 获取资源 [root@master01 ~]# mkdir ingress [root@master01 ~]# cd ingress/ [root@master01 i ...

  4. 不适合使用Mycat的场景

    1.非分片字段查询 Mycat中的路由结果是通过分片字段和分片方法来确定的.例如下图中的一个Mycat分库方案: 根据 tt_waybill 表的 id 字段来进行分片 分片方法为 id 值取 3 的 ...

  5. Arduino连接LCD1602显示屏

    简介 LCD1602是一种工业字符型液晶,能够同时显示16x02即32个字符.LCD1602液晶显示的原理是利用液晶的物理特性,通过电压对其显示区域进行控制,即可以显示出图形.[百度百科] 引脚说明 ...

  6. Python里的黄金库,学会了你的工资至少翻一倍

    作者:[已重置]链接:https://zhuanlan.zhihu.com/p/26054228来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 阅读本文大概需要5分钟 ...

  7. cb10a_c++_顺序容器的操作3关系运算符

    cb10a_c++_cb09a_c++_顺序容器的操作3 2 顺序容器的操作3 3 关系运算符 4 所有的容器类型都可以使用 5 比较的容器必须具有相同的容器类型,double不能与int作比较 6 ...

  8. Beta冲刺<5/10>

    这个作业属于哪个课程 软件工程 (福州大学至诚学院 - 计算机工程系) 这个作业要求在哪里 Beta冲刺 这个作业的目标 Beta冲刺--第五天(05.23) 作业正文 如下 其他参考文献 ... B ...

  9. 你所不知道的redis安装方法,穿一手鞋,看一手资料

    一 .准备工作 $ yum install wget $ cd /opt/ $ mkdir redis $cd redis $ ll wget http://download.redis.io/rel ...

  10. 阿里面试官最喜欢问的21个HashMap面试题

    1.HashMap 的数据结构? A:哈希表结构(链表散列:数组+链表)实现,结合数组和链表的优点.当链表长度超过 8 时,链表转换为红黑树. transient Node<K,V>\[\ ...